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Abstract 

Recently, in order to increase the efficiency of least squares method in numerical solution of ill-posed problems, 

the chain least squares method is presented in a recurrent process by Babolian et al. Despite the fact that the given 

method has many advantages in terms of accuracy and stability, it does not have any stopping criterion and has 

high computational cost. In this article, the attempt is to decrease the computational cost of chain least squares 

method by introducing the modified least squares method based on stopping criterion. Numerical results show that 

the modified method has high accuracy and stability and because of its low computational cost, it can be 

considered as an efficient numerical method. 
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1. Introduction 

Least squares method is one of the efficient 

methods in the numerical solution of many 

engineering and physics problems (Aksan et al. 

2006; Alexander and George, 1990; Ching and Suh-

Yuh, 2002; Jagalur-Mohan et al. 2013; Jannike and 

Hugo, 2012; Jinming, 2012; King and Krueger, 

2003; Laeli and Maalek, 2012). In order to increase 

the efficiency of this method in numerical solution 

of some ill-posed problems, the chain least squares 

method is presented in recurrent form by Babolian 

et al. (2014). In this approach, by reducing an 𝑛-

term least squares problem to the (𝑛 − 1)-term 

ones and continuation of this trend up to the last 

stage (1-term problem), the efficiency of the least 

squares method in numerical solution of ill-posed 

problems has been significantly increased 

(Babolian et al. 2014). Thus, for solving an 𝑛-term 

problem by chain least squares method, we have to 

continue the recurrent process up to the last stage. 

In this article, the attempt is to prevent the 

continuation of the recurrent process up to the last 

stage by providing a logical and experimental 

stopping criterion. Besides decreasing the 

computational cost of chain least squares method, 

the definition of the stopping criterion maintains the 

stability and accuracy of this method. This stopping 
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criterion is based on the convergence of 

intermediate matrix elements of least squares 

method to zero. This is inspired by the convergence 

of the Galerkin method in numerical solution of 

Fredholm integral equation of the second kind 

(Delves and Mohamed, 1985). It should be 

mentioned that by intermediate matrices, we mean 

the coefficient matrix of system of equation 

corresponding to the chain least squares method in 

turning 𝑘-term problem (𝑘 = 𝑛,… ,2) to (𝑘 − 1)-
term one. 

In the second step, considering the main role of 

the artificial trajectories in the definition of chain 

least squares method (Babolian et al. 2014), in 

order to decrease the computational cost of this 

method, a new process is introduced in defining of 

artificial trajectories. According to the kinds of 

problems solved by the chain least squares method, 

at least one of the artificial trajectories is decreased. 

In the new trend, instead of reducing 𝑛-term 

problem to (𝑛 − 1)-term one, the attempt is to 

change 𝑛-term problem to (𝑛 − 𝑙)-term one (𝑙 ≥ 2) 

in such a way that the computational cost of this 

method is decreased. By presenting numerical 

examples in each section, the stability and accuracy 

of the new method will be shown. 

Firstly, a review of chain least squares method 

has been given, then the modified chain least 

squares method is presented. Finally, the efficiency 

of the modified methods is investigated by solving 

several ill-posed functional equations. 
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2. A Review of the Chain Least Squares Method 

Let 𝑓 ∈ 𝐿2[𝑎, 𝑏] and {𝐿𝑖}𝑖=1
∞  be a basis of 𝐿2[𝑎, 𝑏] 

and 
 

𝑓𝑛(𝑠) = ∑𝑎𝑖

𝑛

𝑖=1

𝐿𝑖(𝑠),   𝑠 ∈ [𝑎, 𝑏], 

 
be an ordinary least squares approximation of 𝑓 in 

the basis {𝐿𝑖}𝑖=1
𝑛 . For determining the unknown 

coefficients {𝑎𝑖}𝑖=1
𝑛  we must solve the following 

minimization problem 
 
𝑚𝑖𝑛𝑎1,…,𝑎𝑛e(𝑎1, … , 𝑎𝑛).                                        (1) 
 

In order to determine the solution of (1), it is 

sufficient to solve the following normal equations 
 
𝜕

𝜕𝑎𝑖
𝑒(𝑎1, … , 𝑎𝑛) = 0,   𝑖 = 1, … , 𝑛,                       (2) 

 
where 
 

𝑒(𝑎1, … , 𝑎𝑛) = ∫ [∑𝑎𝑖𝐿𝑖(𝑠)

𝑛

𝑖=1

− 𝑓(𝑠)]

2

𝑑𝑠
𝑏

𝑎

. 

 
It is possible that solving (2) becomes an ill-posed 

problem. In other words, the condition number of 

(2) is large and its solution is determined with large 

error (Datta, 2010). In order to get the approximate 

solution with high accuracy in chain least squares 

method (Babolian et al. 2014), it is supposed that 

solution of (2) is true for the following conditions 
 

𝑔𝑖(𝑎1, … , 𝑎𝑛) = 0,   𝑖 = 1, … , 𝑛 − 1. 
 

In which, artificial constrains 𝑔𝑖  are defined as 

follows (for scalars {𝑟𝑖}𝑖=1
𝑛−1 belonging to ℝ) 

(Babolian et al., 2014) 
 

𝑔𝑖(𝑎1, … , 𝑎𝑛) = 𝑎𝑖 − 𝑎𝑖+1 − 𝑟𝑖 , 
                                     𝑖 = 1,… , 𝑛 − 1.                (3) 
 

Therefore the minimization problem (1) is 

equivalent to 
 
𝑚𝑖𝑛 𝑒(𝑎1, … , 𝑎𝑛)                                         

𝑠. 𝑡 𝑔𝑖(𝑎1, … , 𝑎𝑛) = 0,   𝑖 = 1, … , 𝑛 − 1.
         (4) 

 
By the Lagrange multipliers method (Ito and 

Kunisch, 2008) there exist real scalars {𝜆𝑖  }𝑖=1
𝑛−1 such 

that the problem (4) is equivalent to 
 

{
∇⃗⃗ 𝑒 = ∑ 𝜆𝑖 ∇⃗⃗ 𝑔𝑖                                   

𝑛−1
𝑖=1

𝑔𝑖(𝑎1… , 𝑎𝑛) = 0,   𝑖 = 1, … , 𝑛 − 1.
                  (5) 

 

In which, ∇⃗⃗  is Gradian operator. From (5) one 

gets 
 

{
  
 

  
 
2𝑐11𝑎1
2𝑐21𝑎1
 

2𝑐𝑛1𝑎1
     𝑎1
 
 

+
+
⋮
+
−
 
 

2𝑐12𝑎2
2𝑐22𝑎2
 

2𝑐𝑛2𝑎2
 𝑎2
 
 

+⋯+
+⋯+
⋯

+⋯+
 
⋱
 

2𝑐1𝑛𝑎𝑛
2𝑐2𝑛𝑎𝑛

 
2𝑐𝑛𝑛𝑎𝑛

 
 

       𝑎𝑛−1

−2𝑓1
−2𝑓2
 

−2𝑓𝑛
 
 

−𝑎𝑛

=
=
 
=
=
 
=

𝜆1
𝜆2 − 𝜆1

⋮
−𝜆𝑛−1
𝑟1
⋮

𝑟𝑛−1,

 

  
where 
 

𝑐𝑖𝑗 = ∫ 𝐿𝑖(𝑠)𝐿𝑗(𝑠)𝑑𝑠
𝑏

𝑎

,   𝑖, 𝑗 ∈ {1, … , 𝑛}, 

 

𝑓𝑖 = ∫ 𝐿𝑖(𝑠)𝑓(𝑠)𝑑𝑠
𝑏

𝑎

,   𝑖 = 1, … , 𝑛. 

 
By summing the first 𝑛 equations, (for removing 

{𝜆𝑖}𝑖=1
𝑛−1) we have 

 

{

𝑑1𝑎1
     𝑎1  
 
 

+
−
 
 

𝑑2𝑎2
 𝑎2
 

      𝑎𝑛−1

+⋯+
 
⋯
−

𝑑𝑛𝑎𝑛
 
 

 𝑎𝑛        

=
=
 
=

ℎ
𝑟1
 

 𝑟𝑛−1,

               (6) 

 
where  
 

ℎ =∑𝑓𝑖

𝑛

𝑖=1

,   𝑑𝑗 =∑𝑐𝑖𝑗

𝑛

𝑖=1

,   𝑗 ∈ {1, … , 𝑛}. 

 
Finally, by (6) the coefficients {𝑎𝑖}𝑖=1

𝑛  are 

determined as follows: 
 

𝑎 = 𝐷𝑅, 
 
where 
 

𝑎 = (𝑎1, … , 𝑎𝑛)
𝑇 ,   𝑅 = (𝑟1, … , 𝑟𝑛−1, 1)

𝑇 , 
 

𝐷 =
1

𝑁

(

 
 

𝑁 − 𝑡1     
−𝑡1
⋮
−𝑡1
−𝑡1

𝑁 − 𝑡2    
𝑁 − 𝑡2    

⋮
−𝑡2
−𝑡2

⋯   
⋯   
⋯   
⋯   
⋯   

𝑁 − 𝑡𝑛−1     
𝑁 − 𝑡𝑛−1     

⋮
𝑁 − 𝑡𝑛−1     
−𝑡𝑛−1

ℎ
ℎ
⋮
ℎ
ℎ)

 
 
, 

 
                         𝑁 = ∑ 𝑑𝑖

𝑛
𝑖=1 , 

 
𝑡1 = 𝑑1,   𝑡𝑖 = 𝑡𝑖−1 + 𝑑𝑖 ,   𝑖 = 1, … , 𝑛 − 1. 

 
Let 
 

𝐿(𝑠) = (𝐿1(𝑠), … , 𝐿𝑛(𝑠)), 
 

By the above assumptions, the 𝑛-term 

minimization problem (1) transforms to (𝑛 − 1)-
term one as follows: 
 

𝑚𝑖𝑛
𝑟1,…,𝑟𝑛−1

𝐸(𝑟1, … , 𝑟𝑛−1), 

 
in which 
 

        𝐸(𝑟1, … , 𝑟𝑛−1) = ∫ [∑ 𝑟𝑖𝑝𝑖(𝑠) − 𝑓̅
𝑛−1
𝑖=1 (𝑠)]

2
𝑑𝑠

𝑏

𝑎
, 
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and 
 

𝑝𝑖(𝑠) = 𝐿(𝑠)𝐷𝑖 ,   𝑖 = 1, … , 𝑛, 
 

𝑓̅(𝑠) = 𝑓(𝑠) − 𝑝𝑛(𝑠), 
 
where 
 

𝐷𝑖 = 𝑖’𝑡ℎ 𝑐𝑜𝑙𝑢𝑚𝑛 𝑜𝑓 𝐷. 
 

In chain least squares method (Babolian, 2014), 

the (𝑛 − 1)-term problem is turned into the (𝑛 −
2)-term one by the same trend. This process has 

been continued up to the final stage (1-term 

problem). 

3. Conditional Chain Least Squares Method  

Suppose that the purpose is to determine the least 

squares approximation of 𝑓 ∈ 𝐿2[𝑎, 𝑏] on the basis 

of { 𝐿𝑖}𝑖=1
𝑛 . If this problem is to be solved by chain 

least squares method, then we have to solve 𝑛-term, 

(𝑛 − 1)-term, …, 1-term problems. In other words, 

the chain least squares method will be continued up 

to the last stage and this process has very high 

computational cost. 

In this section, the purpose is to present an 

experimental stopping criterion for chain least 

squares method in such a way that its recurrent 

process is finished before reaching to 1-term 

problem. By this trend, not only is the 

computational cost of this method decreased, but 

also its stability will be increased significantly. For 

explaining stopping criterion, suppose that the 

purpose is to determine the chain least squares of 

the following examples on the basis of {𝑠𝑖}𝑖=0
14 . 

 

Example 1. 𝑓(𝑠) = 𝑒𝑠 ,   𝑠 ∈ [0,1]. 
 

Example 2. 𝑓(𝑠) = sin(𝑠) ,   𝑠 ∈ [0,1]. 
In order to determine these approximations, we 

have to solve (15)-term, (14)-term, …, 1-term 

problems for each example. Suppose that the linear 

system of equations of 𝑘-term problems (𝑘 =
15,… ,1) is shown by 𝐴𝑘𝑎𝑘 = 𝐹𝑘. 𝐴𝑘 and 𝐹𝑘 

matrices are called intermediate matrices of chain 

least squares method. Also, we define 
 

𝑀𝐴𝑘 = 𝑀𝑎𝑥1≤𝑖,𝑗≤𝑘(𝐴𝑘)𝑖,𝑗 ,   𝑘 = 15,… ,1, 
 

𝑀𝐹𝑘 = 𝑀𝑎𝑥1≤𝑗≤𝑘(𝐹𝑘)𝑗 ,   𝑘 = 15,… ,1. 
 

To show the behavior of {𝑀𝐴𝑘}𝑘=1
15  and 

{𝑀𝐹𝑘}𝑘=1
15 , these parameters are computed for 

Examples 1 and 2 and the numerical results are 

presented in Tables 1 and 2, respectively. 

 

 

 

 
Table 1. Values of 𝑀𝐴𝑘 and  𝑀𝐹𝑘 for Example 1 

 
     𝑘 𝑀𝐴𝑘  𝑀𝐹𝑘  

    15 3.45 × 10−02    1.71 × 10−01  

    14    9.65 × 10−03         7.49 × 10−02    

    13 9.65 × 10−04 5.10 × 10−03 

    12 6.45 × 10−05     3.01 × 10−05    
    11 3.18 × 10−06    2.07 × 10−05 

    10 1.19 × 10−07    1.19 × 10−06   

     9 3.41 × 10−09 3.35 × 10−08 

     8 7.29 × 10−11     5.12 × 10−10  
     7 1.14 × 10−12 3.87 × 10−12 

     6 1.26 × 10−14     6.02 × 10−15    
     5 9.33 × 10−17 1.04 × 10−16 

     4 4.26 × 10−19 6.52 × 10−19 
     3 1.06 × 10−21 1.35 × 10−21 

 
Table 2. Values of 𝑀𝐴𝑘 and  𝑀𝐹𝑘 for Example 2 

 
     𝑘 𝑀𝐴𝑘  𝑀𝐹𝑘  

    15 3.45 × 10−02    5.35 × 10−02  

    14    9.65 × 10−03         2.03 × 10−02    

    13 9.65 × 10−04 4.92 × 10−04 

    12 6.45 × 10−05     4.80 × 10−04    
    11 3.18 × 10−06    5.92 × 10−05 

    10 1.19 × 10−07    3.37 × 10−06   

     9 3.41 × 10−09 1.40 × 10−07 

     8 7.29 × 10−11     3.16 × 10−09  
     7 1.14 × 10−12 4.11 × 10−11 

     6 1.26 × 10−14     2.58 × 10−13    
     5 9.33 × 10−17 1.09 × 10−16 

     4 4.26 × 10−19 7.04 × 10−18 

     3 1.06 × 10−21 3.01 × 10−20 
 

According to the presented numerical results in 

Tables 1 and 2, it is concluded that 
 

lim𝑘→1𝑀𝐴𝑘 = 0,   lim𝑘→1𝑀𝐹𝑘 = 0. 
 

In other words, the following conclusion is 

obtained experimentally. 

 

Conclusion 1. In determining the chain least 

squares approximation of 𝑓 ∈  𝐿2[𝑎, 𝑏] in the basis 

{𝐿𝑖}𝑖=1
𝑛 , the elements of intermediate matrices 𝐴𝑘 

and 𝐹𝑘 converge to zero. 

It should be mentioned that such a state occurs in 

approximating the solution of the Fredholm integral 

equation of second kind on an orthogonal basis by 

Galerkin method (Delves and Mohamed, 1985). In 

other words, if 𝐵𝑎 = 𝑏 is the linear system of 

equations corresponding to this problem, then we 

have 
 

lim
𝑛→∞

𝑏𝑛 = 0,   lim
𝑛→∞

𝐵𝑛𝑗 = 0,   𝑗 = 1,… , 𝑛, 

 
in which, {𝐵𝑛𝑗}𝑗=1

𝑛  are the elements of 𝑛'th row of 

matrix 𝐵. 

Now suppose that the purpose is to determine the 

chain least squares approximation of 𝑓 ∈ 𝐿2[𝑎, 𝑏] in 

the basis {𝐿}𝑖=1
𝑛 . Also suppose that 

 
𝐴𝑘𝑎𝑘 = 𝐹𝑘 ,   𝑘 = 𝑛 + 1,… ,1, 

 
is the intermediate linear system of equations of this 
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method. By the conclusion 1, it is logical that we 

continue the algorithm of chain least squares up to 

the stage that (𝑒𝑝𝑠 = 2.26 × 10−16) 
 

𝑀𝐴𝑘 > 𝑒𝑝𝑠   and   𝑀𝐹𝑘 > 𝑒𝑝𝑠. 
 

Because otherwise, the continuation of chain 

method will not only improve the solution of the 

problem, but also the accuracy of the obtained 

approximations will be decreased by introducing 

round off errors and additional noises to the 

problem's solution. 

 

Note 1. In the chain least squares method, for 

determining the approximation of function 𝑓 in the 

basis of {𝐿𝑖}𝑖=1
𝑛 , we encounter (𝑛 + 1)-term 

problem in the first stage, 𝑛-term problem in the 

second stage, …, (𝑛 − 𝑘 + 1)-term problem in the 

𝑘'th stage. In other words, this method is done in 

(𝑛 + 1) stages. 

By the above explanations and according to the 

fact that in every stage 𝑀𝐴𝑘 ≅ 𝑀𝐹𝑘(Tables 1 and 

2), the following stopping criterion is presented for 

chain least squares method. 

 

Conclusion 2. In determining the approximation of 

𝑓 ∈ 𝐿2[𝑎, 𝑏] in the basis {𝐿𝑖}𝑖=1
𝑛  by chain least 

squares method, the algorithm of this method in the 

𝑘'th stage will be continued when 𝑀𝐴𝑘 ≥ 𝑒𝑝𝑠. We 

name this new method, conditional chain least 

squares method (CCLSM). 

Therefore, if the chain least squares method is 

continued up to the 𝑘'th stage (𝑘 ∈ 𝑁), then 𝑛-

term, (𝑛 − 1)-term, …, (𝑛 − 𝑘 + 1)-term problems 

will be solved by this method and we will not need 

to solve (𝑛 − 𝑘)-term,…,1-term problems. So its 

computational cost will be decreased significantly. 

In order to compare the accuracy of conditional 

chain least squares method with ordinary least 

squares method (OLSM) and chain least squares 

method (CLSM), the examples 1 and 2 are 

approximated by these methods in the basis {𝑠𝑖}𝑖=0
𝑛 . 

The numerical results are given in Tables 3 and 4. 
 

Table 3. Maximum absolute errors for Example 1 
 

  𝒏        OLSM        CLSM       CCLSM 

  𝟏 1.55 × 10−01 1.55 × 10−01 1.55 × 10−01 
  𝟐 1.49 × 10−02 1.49 × 10−02 1.49 × 10−02 
  𝟑 1.05 × 10−03 1.05 × 10−03 1.05 × 10−03 
  𝟒 5.76 × 10−05 5.76 × 10−05 5.76 × 10−05 
  𝟓 2.59 × 10−06 2.59 × 10−06 2.59 × 10−06 
  𝟔 9.39 × 10−08 9.39 × 10−08 9.39 × 10−08 
  𝟕 3.32 × 10−09 3.29 × 10−09 3.29 × 10−09 
  𝟖 3.07 × 10−10 9.65 × 10−11 9.65 × 10−11 
  𝟗 1.28 × 10−09 2.53 × 10−12 2.53 × 10−12 
 𝟏𝟎 6.22 × 10−09 5.95 × 10−14 5.95 × 10−14 
 𝟏𝟏 2.51 × 10−08 1.66 × 10−15 1.66 × 10−15 
 𝟏𝟐 8.49 × 10−08 1.77 × 10−15 1.77 × 10−15 
 𝟏𝟑 2.49 × 10−07 2.22 × 10−15 1.33 × 10−15 
 𝟏𝟒 8.22 × 10−07 8.88 × 10−16 1.77 × 10−15 

 

Table 4. Maximum absolute errors for Example 2 
 

  𝒏        OLSM        CLSM       CCLSM 

  𝟏 4.61 × 10−02 4.61 × 10−02 4.61 × 10−02 
  𝟐 7.46 × 10−03 7.46 × 10−03 7.46 × 10−03 
  𝟑 3.10 × 10−04 3.10 × 10−04 3.10 × 10−04 
  𝟒 2.94 × 10−05 2.94 × 10−05 2.94 × 10−05 
  𝟓 7.64 × 10−07 7.64 × 10−07 7.64 × 10−07 
  𝟔 5.12 × 10−08 5.12 × 10−08 5.12 × 10−08 
  𝟕 9.70 × 10−10 9.66 × 10−10 9.66 × 10−10 
  𝟖 9.08 × 10−11 5.01 × 10−11 5.01 × 10−11 
  𝟗 2.97 × 10−10 7.42 × 10−13 7.42 × 10−13 
 𝟏𝟎 1.66 × 10−09 3.13 × 10−14 3.13 × 10−14 
 𝟏𝟏 6.99 × 10−09 3.79 × 10−16 3.79 × 10−16 
 𝟏𝟐 2.07 × 10−08 3.33 × 10−16 3.33 × 10−16 
 𝟏𝟑 3.09 × 10−08 2.22 × 10−16 2.22 × 10−16 
 𝟏𝟒 8.52 × 10−08 3.63 × 10−16 3.63 × 10−16 

 
For example, in determining the approximation of 

𝑓(𝑠) = 𝑒𝑠, 𝑠 ∈ [0,1] in the basis {𝑠𝑖}𝑖=0
14  by 

CCLSM, this method is continued up to the 11'th 

stage. So solving 4-term,…,1-term problems are 

avoided. 

According to the numerical results in Tables 3 

and 4, it is clear that the conditional chain least 

squares method besides decreasing the 

computational cost, has the desirable accuracy and 

stability. 

4. Modified Chain Least Squares Method 

Suppose that the aim is to obtain the numerical 

solution of an ill-posed problem. Fredholm integral 

equation of the first kind (Bitsadze, 1995; Delves 

and Mohamed, 1985) and determination of the least 

squares approximation of an arbitrary function on 

the basis {𝑠𝑖}𝑖=0
𝑛  (Datta, 2010; Kincaid and Ward, 

2002) are some examples of this kind of ill-posed 

problem. 

If ill-posed problems are approximated by least 

squares method on the basis {𝑠𝑖}𝑖=0
𝑛  then we will 

encounter (𝑛 + 1)-term problem. Let 𝐴𝑎 = 𝐹 be 

the corresponding linear system of equations of this 

problem in the basis {𝑠𝑖}𝑖=0
𝑛 , by increasing 𝑛,  the 

condition number of the matrix 𝐴 will be enlarged 

(Datta, 2010; Kincaid and Ward, 2002) and the 

solution of the corresponding system is determined 

by large errors. In the chain least squares method 

for solving 𝑛-term problem (Babolian et al. 2014), 

(𝑛 − 1) artificial trajectories are defined. By 

continuing this process up to 1-term problem, we 

overcome the ill-posedness and accurate 

approximate solutions are obtained. 

In numerical solution of an ill-posed problem, the 

first equations of the system 𝐴𝑎 = 𝐹 do not have a 

main role in ill-posedness of this system (Delves 

and Mohamed, 1985). The ill-posedness appears 

mainly on final equations of this system. By this 

argument, in chain least squares method, artificial 

trajectories are defined in such a way that the 

structure of the few first equations of the system 
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𝐴𝑎 = 𝐹 is maintainted in decreasing the dimension 

of least squares problem and instead, some of the 

artificial trajectories are eliminated. 

For example, if the first 𝑠 artifical trajectories are 

eliminated, then in chain least squares method, 𝑛-

term problem will be changed to (𝑛 − 𝑠 − 1)-term 

problem. In other words, in the new method, we 

will not have any need to solve (𝑛 − 1)-term, …, 

(𝑛 − 𝑠)-term problems. So the computational cost 

of chain least squares method will be decreased 

significantly. If this work is done by maintaining 

accuracy and stability of this method, it will be very 

valuable. To explain this method, we act as follows. 

Let 𝑓𝑛 be the least squares approximation of 

𝑓 ∈ 𝐿2[𝑎, 𝑏] in the basis {𝐿𝑖}𝑖=1
𝑛 , i.e., 

 

𝑓𝑛(𝑠) =∑𝑎𝑖𝐿𝑖(𝑠)

𝑛

𝑖=1

,   𝑠 ∈ [𝑎, 𝑏] 

 
Now, we must solve the following minimization 

problem 
 
𝑚𝑖𝑛𝑎1,…,𝑎𝑛 𝑒(𝑎1, … , 𝑎𝑛),                                       (7) 
 
where 
 

𝑒(𝑎1, … , 𝑎𝑛) = ∫ [∑ 𝑎𝑖𝐿𝑖(𝑠)
𝑛
𝑖=1 − 𝑓(𝑠)]2𝑑𝑠

𝑏

𝑎
.      (8) 

 
Assume that the unknown coefficients {𝑎𝑖}𝑖=1

𝑛  

holds in the following trajectories (for scalars 

{𝑟𝑖}𝑖=1
𝑛−𝑠−1 belonging to ℝ) 

 
𝑔𝑖(𝑎1, … , 𝑎𝑛) = 0,   𝑖 = 1, … , 𝑛 − 𝑠 − 1,             (9) 
 
where 𝑛, 𝑠 ∈ ℕ, 0 ≤ 𝑠 ≤ 𝑛 − 1 and 
 

𝑔𝑖(𝑎1, … , 𝑎𝑛) = 𝑎𝑠+𝑖 − 𝑎𝑠+𝑖+1 − 𝑟𝑖 ,
𝑖 = 1, … , 𝑛 − 𝑠 − 1. 

 
In other words, we omit the following 𝑠-artificial 

trajectories  
 

{

𝑎1
 
𝑎𝑠

−
⋮
−

𝑎2
 

𝑎𝑠+1

=
⋮
=

𝑟1
 
𝑟𝑠

 

 
Then by (9) and (7) we have 

 

{
𝑚𝑖𝑛
𝑎1,…,𝑎𝑛

𝑒(𝑎1, … , 𝑎𝑛),                                       

𝑔𝑖(𝑎1… , 𝑎𝑛) = 0,   𝑖 = 1, … , 𝑛 − 𝑠 − 1.
 

 
now by the Lagrange multipliers method (Ito and 

Kunisch, 2008) one gets 
 

{
∇𝑒 = ∑ 𝜆𝑖 ∇⃗⃗ 𝑔𝑖                                        

𝑛−𝑠−1

𝑖=1

𝑔𝑖(𝑎1, … , 𝑎𝑛) = 0  𝑖 = 1,… , 𝑛 − 𝑠 − 1

 

 

where {𝜆𝑖}𝑖=1
𝑛−𝑠−1are real scalars. Since 

 

∇⃗⃗ 𝑒 = (
𝜕𝑒

𝜕𝑎1
, … ,

𝜕𝑒

𝜕𝑎𝑛
),  

 
we have 
 

 

{
 
 
 
 

 
 
 
 

𝑐11𝑎1
 

𝑐𝑠1𝑎1
2(𝑐𝑠+1,1𝑎1
2(𝑐𝑠+2,1𝑎1

 
2(𝑐𝑛1𝑎1
𝑎𝑠+1
  
 

+
⋮
+
+
+
⋮
+
−
 
 

𝑐12𝑎2
 

𝑐𝑠2𝑎2
𝑐𝑠+1,2𝑎2
𝑐𝑠+2,2𝑎2

 
𝑐𝑛2𝑎2
𝑎𝑠+2
 
 

+
 
+
+
+
 
+
 
⋱
 

…
 
…
…
…
 
…
 
 
 

+
 
+
+
+
 
+
 
 
 

𝑐1𝑛𝑎𝑛
 

𝑐𝑠𝑛𝑎𝑛
𝑐𝑠+1,𝑛𝑎𝑛
𝑐𝑠+2,𝑛𝑎𝑛

 
𝑐𝑛𝑛𝑎𝑛
 
 

𝑎𝑛−1

 
 
 
−
−
 
−
 
 
−

 
 
 

𝑓𝑠+1)
𝑓𝑠+2
 
𝑓𝑛
 
 
𝑎𝑛

=
⋮
=
=
=
⋮
=
=
⋮
=

𝑓1
 
𝑓𝑠
𝜆1

𝜆2 − 𝜆1
 

−𝜆𝑛−𝑠−1
𝑟1
 

𝑟𝑛−𝑠−1

 

 
In which 
 

𝑐𝑖𝑗 = ∫ 𝐿𝑖(𝑠)𝐿𝑗(𝑠)𝑑𝑠
𝑏

𝑎

,   𝑖, 𝑗 ∈ {1, … , 𝑛}, 

𝑓𝑖 = ∫ 𝐿𝑖(𝑠)𝑓(𝑠)𝑑𝑠
𝑏

𝑎

,   𝑖 ∈ {1, … , 𝑛}, 

 
by summing equations (𝑠 + 1), …, 𝑛 (for removing 

{𝜆𝑖}𝑖=1
𝑛−𝑠−1) we have 

 

{
  
 

  
 
𝑐11𝑎1
 

𝑐𝑠1𝑎1
𝑑1𝑎1
𝑎𝑠+1  
 
 

+
⋮
+
+
−
 
 

𝑐12𝑎2
 

𝑐𝑠2𝑎2
𝑑2𝑎2
𝑎𝑠+2
 
 

+
 
+
+
 
⋱
𝑎𝑛−1

…
 
…
…
 
 
 

+
 
+
+
 
 
−

 𝑐1𝑛𝑎𝑛
 

 𝑐𝑠𝑛𝑎𝑛
 𝑑𝑛𝑎𝑛
 
 
𝑎𝑛

=
⋮
=
=
=
⋮
=

𝑓1
 
𝑓𝑠
ℎ
𝑟1
 

𝑟𝑛−𝑠−1

               (10) 

  
In which 
  

ℎ = ∑ 𝑓𝑖  

𝑛

𝑖=𝑠+1

,   𝑑𝑗 = ∑ 𝑐𝑖𝑗

𝑛

𝑖=𝑠+1

,   𝑗 = 1, … , 𝑛. 

 
if 𝐷 be the inverse of the coefficient matrix of 

system (10) then {𝑎𝑖}𝑖=1
𝑛  are determined as follows 

 
𝑎 = 𝐷𝐹,                                                               (11) 
 
where 
 

𝑎 = (𝑎1, … , 𝑎𝑛)
𝑇 ,     

𝐹 = (𝑓1, … , 𝑓𝑠, ℎ, 𝑟1, … , 𝑟𝑛−𝑠−1)
𝑇 . 

 
Let 
 

𝐿(𝑠) = (𝐿1(𝑠), … , 𝐿𝑛(𝑠))
𝑇 

 
from (8) and (11) we have 
 

𝑒(𝑎1, … , 𝑎𝑛) = ∫ [𝐿(𝑠)𝑎 − 𝑓(𝑠)]2𝑑𝑠
𝑏

𝑎

 

                       = ∫ [𝐿(𝑠)𝐷𝐹 − 𝑓(𝑠)]2𝑑𝑠
𝑏

𝑎
              (12) 

 
Since 
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𝐿(𝑠)𝐷𝐹 = 𝐿(𝑠)𝐷1𝑓1 +⋯+ 𝐿(𝑠)𝐷
𝑠𝑓𝑠

+ 𝐿(𝑠)𝐷𝑠+1ℎ + 𝐿(𝑠)𝐷𝑠+2𝑟1 +⋯
+ 𝐿(𝑠)𝐷𝑛𝑟𝑛−𝑠−1, 

 
where 
 

𝐷𝑖 = 𝑖’𝑡ℎ 𝑐𝑜𝑙𝑢𝑚𝑛 𝑜𝑓 𝐷, 
 
and by taking  
 

𝑝𝑖(𝑠) = 𝐿(𝑠)𝐷
𝑠+1+𝑖 ,   𝑖 = 1, … , 𝑛 − 𝑠 − 1. 

 
From (11) we have 
 
𝐸(𝑟1, … , 𝑟𝑛−𝑠−1) = 𝑒(𝑎1, … , 𝑎𝑛)

= ∫[ ∑ 𝑝𝑖(𝑠)𝑟𝑖 − 𝑓̅(𝑠)

𝑛−𝑠−1

𝑖=1

]2

𝑏

𝑎

𝑑𝑠, 

 
where 
 

𝑓(̅𝑠) = 𝑓(𝑠) −∑𝐿(𝑠)𝐷𝑖𝑓𝑖

𝑠

𝑖=1

− 𝐿(𝑠)𝐷𝑠+1ℎ. 

 
So the minimization problem (7) reduces to  

  
min

𝑟1,𝑟2,…,𝑟𝑛−𝑠−1
E(𝑟1, 𝑟2, … , 𝑟𝑛−𝑠−1). 

 
Now, for solving the minimization problem with 

(𝑛 − 𝑠 − 1)-term we use chain least squares 

method which is introduced in section 3. 

 

Definition 1. We call, "transformation of the 𝑛-

term least squares problem with presented 

algorithm in this section to the (𝑛 − 𝑠 − 1)-term 

least squares problem and solving by conditional 

chain least squares" as Modified Chain Least 

Squares method (MCLSM). 

We expect that for small and logical values of s, 

the accuracy and stability of the above method is 

the same as CCLSM, but computational cost of 

MCLSM is less than CCLSM. To confirm this, we 

compare the least squares approximations of 

Examples 1 and 2 in the basis {𝑠𝑖}𝑖=0
𝑛  by OLSM 

and MCLSM and CPU times of these methods 

(CLSM, CCLSM, MCLSM) are compared for 

Example 1. We take 𝑠 = 3 for MCLSM. Tables 5, 6 

and 7 show that, the modified chain least squares 

method is almost equal to conditional chain least 

squares method but the CPU time of MCLSM is 

less than CLSM and CCLSM. 

5. Numerical Solution of Some Ill-posed 

Functional Equations with Modified Chain 

Least Squares Method 

In this section, two cases of ill-posed functional 

equations are investigated and some examples are 

solved by MCLSM. 
 

Table 5. Comparison of maximum absolute errors of 

OLSM and MCLSM for Example 1 
 

      𝒏           OLSM    MCLSM 

      𝟒       5.76 × 10−05    5.76 × 10−05 
      𝟓    2.59 × 10−06       2.59 × 10−06    
      𝟔    9.39 × 10−08    9.93 × 10−08 
      𝟕    3.32 × 10−09    3.29 × 10−09 
      𝟖    3.07 × 10−10    9.64 × 10−11 
      𝟗    1.28 × 10−09    2.60 × 10−12 
    𝟏𝟎    6.22 × 10−09    5.28 × 10−14 
    𝟏𝟏    2.51 × 10−08    2.17 × 10−14 
    𝟏𝟐    8.49 × 10−08    6.62 × 10−14 
    𝟏𝟑    2.49 × 10−07    5.11 × 10−14 
    𝟏𝟒    8.22 × 10−07    1.73 × 10−14 

 
Table 6. Comparison of maximum absolute errors of 

OLSM and MCLSM for Example 2 
 

𝒏       OLSM    MCLSM 

𝟒       2.94 × 10−05    2.94 × 10−05 
𝟓    7.64 × 10−07       7.64 × 10−07    
𝟔    5.12 × 10−08    5.12 × 10−08 
𝟕    9.70 × 10−10    9.67 × 10−10 
𝟖    9.08 × 10−11    5.01 × 10−11 
𝟗    2.97 × 10−10    7.16 × 10−13 
𝟏𝟎    1.66 × 10−09    5.24 × 10−14 
𝟏𝟏    6.99 × 10−09    6.44 × 10−15 
𝟏𝟐    2.07 × 10−08    2.09× 10−14 
𝟏𝟑    3.09 × 10−08    1.66 × 10−14 
𝟏𝟒    8.52 × 10−08    5.44 × 10−15 

 
Table 7. Comparison of CPU times (CLSM,  

CCLSM, MCLSM) for Example1 
 

𝒏     CLSM     CCLSM       MCLSM 

𝟒      01.34      00.86         00.13 
𝟓      02.58      01.20         00.38 
𝟔      04.07      01.42         00.83 
𝟕      02.98      02.18         01.31 
𝟖      03.33      03.37         01.52 
𝟗      04.91      04.74         02.16 
𝟏𝟎      06.94      06.79         03.37 
𝟏𝟏      09.63      09.44         05.09 
𝟏𝟐 13.10      12.70         06.91 
𝟏𝟑     16.70      16.60         09.68 
𝟏𝟒     21.90      21.30         12.90 

 
It should be mentioned that all of these 

computations are done in Matlab 2011a with 16 

significant digits and Gaussian quadrature rule of 

order 16 is used for computing the related integrals 

 

Case 1. 

In this case, Fredholm integral equations of the first 

kind are investigated. These equations appear in 

many physical problems (Balanis, 1989). Because 

of the ill-poseness of these functional equations, 

these equations are investigated by many 

researchers (Babolian and Delves, 1979; Babolian 

et al. 2007; Groetsch, 1984; Maleknejad et al. 2006; 

Nashed, 1976). The general form of the integral 

equations of the first kind is as follows. 
 

∫ 𝑘(𝑠, 𝑡)𝑥(𝑡)𝑑𝑡
𝑏

𝑎
= 𝑓(𝑠),   𝑠 ∈ [𝑎, 𝑏].                 (13) 
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in which 𝑓 and 𝑘 are known functions and 𝑥 is 

unknown function. For solving these equations with 

least squares method on the basis {𝑡𝑖}𝑖=0
𝑛 , let 

 

𝑥(𝑡) ≅  ∑ 𝑎𝑖𝑡
𝑖𝑛

𝑖=0 ,   𝑡 ∈ [𝑎, 𝑏],                            (14) 
 
by putting approximate solution (14) in (13) we 

have 
 

∑𝑎𝑖𝑞𝑖(𝑠)

𝑛

𝑖=0

= 𝑓(𝑠) + 𝑟𝑛(𝑠),   𝑠 ∈ [𝑎, 𝑏], 

 
where 𝑟𝑛(𝑠) is residual function and 
 

𝑞𝑖(𝑠) = ∫ 𝑘(𝑠, 𝑡)𝑡𝑖 𝑑𝑡
𝑏

𝑎

,   𝑠 ∈ [𝑎, 𝑏]. 

 
For determining unknown coefficients {𝑎𝑖}𝑖=0

𝑛 , it 

is sufficient to determine least squares of 𝑓 in the 

set {𝑞𝑖}𝑖=0
𝑛 . 

In this section, we determine unknown 

coefficients {𝑎𝑖}𝑖=0
𝑛 with (OLSM), (CLSM), 

(MCLSM) methods. We take 𝑠 = 1 for MCLSM. 

 

Example 3. 
 

∫ 𝑒𝑠𝑡𝑥(𝑡)𝑑𝑡
1

0

=
𝑒𝑠+1 − 1

𝑠 + 1
,   𝑠 ∈ [0,1]. 

 
Example 4. 

 

∫ cos(𝑠𝑡) 𝑥(𝑡)𝑑𝑡 =
2

1
−cos(𝑠)+2𝑐𝑜𝑠2(𝑠)−𝑠(sin(𝑠)−4 cos(𝑠) sin(𝑠)+1)

𝑠2
,   𝑠 ∈ [1,2]. 

 
with the exact solutions 𝑒𝑡 and 𝑡 respectively. The 

maximum absolute errors of examples 3 and 4 are 

reported in Tables 8 and 9. 
 

Table 8. Maximum absolute errors of (OLSM),  

(CLSM), (MCLSM) for Example 3 
 

  𝒏        OLSM        CLSM      MCLSM 

  𝟏 1.42 × 10−01 1.42 × 10−01   ---------------- 
  𝟐 1.46 × 10−02 1.46 × 10−02 1.46 × 10−02 
  𝟑 1.05 × 10−03 1.05 × 10−03 1.05 × 10−03 
  𝟒 6.45 × 10−02 5.94 × 10−05 5.94 × 10−05 
  𝟓 2.27 × 10−01 2.71 × 10−06 2.74 × 10−06 
  𝟔 2.21 × 10−02 1.94 × 10−06 8.58 × 10−06 
  𝟕 5.82 × 10−02 2.17 × 10−04 4.89 × 10−04 
  𝟖 5.89 × 10−2 3.42 × 10−04 3.46 × 10−04 
  𝟗 3.18 × 10−02 1.86 × 10−04 2.36 × 10−04 
 𝟏𝟎 2.19 × 10−00 5.45 × 10−04 1.49 × 10−04 

 
 

 

 

 

 

 

 

 
 

Table 9. Maximum absolute errors of (OLSM),  

(CLSM), (MCLSM) for Example 4 
 

  𝒏        OLSM        CLSM      MCLSM 

  𝟏 0 0   ---------------- 
  𝟐 6.61 × 10−11 6.77 × 10−15 3.38 × 10−14 
  𝟑 8.61 × 10−07 1.79 × 10−13 2.62 × 10−14 
  𝟒 4.75 × 10−04 2.83 × 10−11 6.67 × 10−12 
  𝟓 1.07 × 10−03 3.72 × 10−09 9.23 × 10−10 
  𝟔 2.32 × 10−03 3.21 × 10−06 1.13 × 10−05 
  𝟕 1.98 × 10−03 6.06 × 10−07 7.50 × 10−06 
  𝟖 1.19 × 10−02 1.09 × 10−06 7.30 × 10−06 
  𝟗 1.74 × 10−03 1.77 × 10−05 1.25 × 10−05 
 𝟏𝟎 1.15 × 10−02 2.04 × 10−05 1.60 × 10−04 

 

Case 2. 

In this case, the singular second order initial value 

differential equations are investigated. These 

equations appear in some models of physical 

problems and are investigated by many researchers 

(Wazwaz, 2002; Kiymaz and Mirasyedioglu, 2005; 

Aslanov and Abu-Alshaikh, 2008). Since these 

equations have singular points, their numerical 

solutions are of paramount importance. The general 

form of these equations are as follows: 
 

{
𝑝(𝑡)𝑦′′ + 𝑞(𝑡)𝑦′ + 𝑟(𝑡)𝑦 = 𝑓(𝑡), 𝑡 ∈ [0, 𝑇],

𝑦(0) = 𝑦0,   𝑦
′(0) = 𝑦1 ,                                     

 (15) 

 
where function 𝑝 has some zeros in [0,T]. To 

approximate the solution in the basis {𝑡𝑖}𝑖=0
𝑛  with 

least squares method, let 
 

𝑦(𝑡) ≅ ∑ 𝑎𝑖𝑡
𝑖𝑛

𝑖=0                                                  (16) 
 
by using the initial values, the unknown parameters 

𝑎0 and 𝑎1 are determined as follows: 
 

𝑎0 = 𝑦0,   𝑎1 = 𝑦1. 
 
By putting (16) in (15) we have 
 
∑ 𝑎𝑖𝐿𝑖(𝑡) = 𝑓(̅𝑡) + 𝑟𝑛(𝑡),
𝑛
𝑖=2                               (17) 

 
where 𝑟𝑛(𝑡) is residual function and 
 

𝐿𝑖(𝑡) = 𝑝(𝑡)(𝑖(𝑖 − 1))𝑡𝑖−2 + 𝑞(𝑡)𝑖𝑡𝑖−1 + 𝑟(𝑡)𝑡𝑖,

𝑖 = 2, … , 𝑛, 
𝑓(̅𝑡) = 𝑓(𝑡) − (𝑎1𝑞(𝑡) + (𝑎0 + 𝑎1𝑡)𝑟(𝑡)). 
 

For determining unknown coefficient {𝑎𝑖}𝑖=2
𝑛 it is 

sufficient to determine least squares of 𝑓 in the 

basis {𝐿𝑖}𝑖=2
𝑛 . 

Similar to case 1 we calculate unknown 

coefficients {𝑎𝑖}𝑖=2
𝑛 with (OLSM), (CLSM), 

(MCLSM). We take 𝑠 = 2 for MCLSM. 

 

Example 5.  
 

{
𝑡2𝑦′′ + (1 + 𝑡)𝑦′ − 𝑠𝑖𝑛(𝑡)𝑦 = 𝑓(𝑡),   𝑡 ∈ [0,1].

𝑦(0) = 1,    𝑦′(0) = 1                                                
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Example 6. 
 

{
(𝑡 − 0.5)(𝑡 − 0.7)𝑦′′ + 𝑡𝑦′ + 𝑒𝑡𝑦 = 𝑓(𝑡),   𝑡 ∈ [0,1],

𝑦(0) = 1,    𝑦′(0) = 0.                                                         
 

 
The right hand side of the above equations are so 

considered such that 𝑒𝑡, cos (𝑡) is the solutions 

respectively. 

The maximum absolute errors of (OLSM), 

(CLSM), (MCLS) for example 5, 6 are reported in 

Tables 10, 11. 
 

Table 10. Maximum absolute errors of (OLSM), 

(CLSM), (MCLSM) for Example 5 
 

  𝒏        OLSM        CLSM      MCLSM 

  𝟑 1.33 × 10−02 1.33 × 10−02   ---------------- 
  𝟒 6.38 × 10−04 6.38 × 10−04 ---------------- 
  𝟓 2.53 × 10−05 2.53 × 10−05 2.53 × 10−05 
  𝟔 8.65 × 10−07 8.65 × 10−07 8.65 × 10−07 
  𝟕 2.51 × 10−08 2.51 × 10−08 2.51 × 10−08 
  𝟖 6.89 × 10−10 6.89 × 10−10 6.88 × 10−10 
  𝟗 1.54 × 10−11 1.81 × 10−11 1.80 × 10−11 
 𝟏𝟎 1.37 × 10−11 3.71 × 10−13 3.71 × 10−13 
 𝟏𝟏 7.41 × 10−11 6.89 × 10−15 7.10 × 10−15 
 𝟏𝟐 
𝟏𝟑 
𝟏𝟒 

3.67 × 10−10 
3.21 × 10−10 
2.52 × 10−09 

4.44 × 10−16 
4.44 × 10−16 
4.44 × 10−16 

4.44 × 10−16 
4.44 × 10−16 
4.44 × 10−16 

6. Conclusions 

According to the given numerical results, it is 

concluded that the presented conditional least 

squares and modified least squares methods, beside 

maintaining accuracy and stability, have low 

computational cost and this is a valuable advantage 

for the new methods. It should be mentioned that 

the parameter 𝑠 introduced in modified chain least 

squares is chosen experimentally in such a way that 

by increasing the ill-posedness of the problem, this 

parameter is chosen close to 1. Of course, the 

presented method of section 4 can be expressed in 

other formats that will be discussed more in the 

next articles. 
 

Table 11. Maximum absolute errors of (OLSM), 

(CLSM), (MCLSM) for Example 6 
 

  𝒏        OLSM        CLSM      MCLSM 

  𝟑 2.53 × 10−03 2.53 × 10−03   ---------------- 
  𝟒 1.16 × 10−04 1.16 × 10−04 ---------------- 
  𝟓 9.75 × 10−06 9.75 × 10−06 4.87 × 10−06 
  𝟔 2.12 × 10−07 2.12 × 10−07 1.06 × 10−07 
  𝟕 1.42 × 10−08 1.42 × 10−08 7.12 × 10−09 
  𝟖 1.99 × 10−10 1.99 × 10−10 9.96 × 10−11 
  𝟗 1.08 × 10−11 1.08 × 10−11 5.42 × 10−12 
 𝟏𝟎 2.61 × 10−12 1.02 × 10−13 5.10 × 10−14 
 𝟏𝟏 1.38 × 10−11 5.55 × 10−15 2.77 × 10−15 
 𝟏𝟐 
𝟏𝟑 
𝟏𝟒 

1.11 × 10−10 
3.28 × 10−10 
2.45 × 10−10 

2.22 × 10−16 
2.22 × 10−16 
2.22 × 10−16 

1.11 × 10−16 
1.11 × 10−16 
1.11 × 10−16 
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