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Abstract – A chaos control method suggested by Erjaee has been reviewed. It has been shown that this 
technique can be applied in various evolutionary systems of 2-dimensional types. The method has been 
applied for cases of the Henon map, as well as Burger’s map. The limitations of the control technique 
have also been discussed by considering the Standard Map and the Gumowski-Mira map. The results 
obtained through numerical calculations are very interesting and significant. This technique has some 
advantages over many other techniques of chaos control in discrete systems. 
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1. INTRODUCTION 
 

The subject chaos control refers to the technique of manipulation of chaotic motion exhibited in 
nonlinear systems. Such a technique proves to be useful, as chaos can be controlled in various ways to 
achieve desirable results. Recent articles on chaos control, [1-11] have revealed the fact that chaos 
may be of great benefit if it is applied properly to irregular and complex nonlinear systems. This new 
technology of nonlinear dynamics has a significant impact on various engineering devices such as 
high-performance circuits, communication signals, chemical reactions, etc. in changing irregular 
behavior into regularity. 

The area of chaos control is now considered as a challenge area of research and it is emerging as 
an interdisciplinary field because it involves research in all areas of knowledge. Chaos control poses a 
substantial challenge because of extreme sensitivity and complexity of chaotic dynamics. Also, as 
almost all the systems showing chaotic behavior are of a nonlinear type, and there is no common way 
to explain such behavior, chaos control techniques are different for different chaotic systems. 

Erjaee [12] has formulated a method for achieving asymptotic stability of a 2-dimensional 
dynamical system, and has illustrated the method by applying it to a Predator-Prey system. 

In this paper, we have applied the above method to 2-dimensional Henon and Burger maps to 
achieve asymptotic stability. Further, we have considered the case where the above technique fails, by 
discussing the Standard Map and Gumowski-Mira Map. 
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2. DESCRIPTION OF METHOD 
 
We consider the dynamics of the desired map, 1ny + , and that of the actual one, 1nx + , through the 
following mappings: 

 
1nx +  = )p,x(F n ,  

1ny +  = )p,y(F n . 
 

The dynamics of the neighborhood of 1nx +  and 1ny +  can be represented as 
 
                                        1nx +  = pxn RR BA +                                                        (1)       

                                        1ny +  = pyn DD BA + ,                                                      (2)  
 
where the matrices RA , DA , RB , DB  can be obtained as follows: 
 

     RA  = )p,x(FD nxn
 

      DA  = )p,y(FD nyn
 

    RB  = )p,x(FD np  

     DB  = )p,y(FD np . 
 
Now, suppose the control input is given by 
 
                                                   p  = nxRC  + pMC   – nyDC                                                (3)

  
 On subtracting (1) from (2), and using (3), we obtain the error equation as 
 
     1ne +  = ne)( RDR CBA −  + ny))(( RDDDR CCBAA −+− + p)( MDR CBB − .            (4) 
 
 It is clear from (4) that for asymptotic stability we need 
 
                               )( RDDDR CCBAA −+−  = 0                                                (5) 
                               MDR CBB −  = 0.                                                                        (6) 
  
Usually we have 0e  ≠ 0. 
Therefore, for asymptotic stability, our requirement is ne → 0 as n→ ∞, and for this we must have 
 
                  RDR CBA −  = – I.                                                            (7)     
 

From equations (5), (6) and (7) we can obtain DC , MC , RC  and then from (3), we can obtain 
the control parameter  p . 
 

3. APPLICATION OF CONTROL TECHNIQUE 
 
Here below, we apply the above technique to a Henon map and Burger’s map. 

 
(a) Control in Henon Map 
 

Henon has considered a pair of difference equations: 
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                                                         (8) 

 
for given parameters a and b. 
The above system has 2 fixed points X

r
 = (X, Y), for a > 2)b1(

4
1

−−  such that 
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=
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=

XbY
a

abbX
2

]}4)1({1[ 2
12

                                                  (9) 

 
The above system exhibits a strange attractor for a = 1.4, b = 0.3. 

It has been observed that for such parameter values, the fixed point (0.63135448, 0.18940634) of 
the Henon system is unstable and we desire to stabilize it. Also, the map is unpredictable at the 
neighboring point (0.531245, 0.214678). 

In this case, after some calculations, we obtain 
  

                                      RA  =  














 −

03.0

1487486.1
, 

 

DA  =  














 −

03.0

1767792544.1
. 

 
 Now, setting a = a  = 1.4, b = b  = 0.3, we get 

 

RB  =  














 −

531245.00

028222125.0
, 

 

DB  =  














 −

63135448.00

0398608479.0
. 

 
Using these in equations (5), (6) and (7), we get 
 

RC  =  














 −

5839.1475169.0

50873.222297.1
, 

 

DC  =  














 −

5839.1475169.0

50873.292618.1
, 
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MC  = 
















841437.00

0708016.0
. 

 
Then, from (3), after certain calculation we get 
 

p  = 
















24489.0

361416.0
. 

 
The dynamics of the uncontrolled and corresponding controlled map of the system (8) are 

respectively shown in Figs. 1(a), 1(b) (uncontrolled) and 1(a ′ ), 1( b′ ) (controlled). 
 

                                                                                         

                                   
Fig. 1. The uncontrolled and controlled Henon map 

 
Figure 1(a), 1(b) represent time series and Phase Plot for uncontrolled system and Fig. 1 (a ′ ), 1 

(b′ ) are the corresponding plots for controlled system. 
 
(b) Control in Burger’s Map 
 
 Burger’s map, [13], is defined by the following pair of equations: 
 

                                                         




++=
−−=

yxybyxg
yxayxf

)1(),(
)1(),( 2

                                           (10) 

   
where a and b are non-zero parameters. 

This map is the discrete form of differential equations appearing in hydrodynamics. 
There are two fixed points (−b, ab± ), which are stable for b < 0.5 

For a = 0.9, b = 0.856, the motion about the fixed point (−0.856, 0.87772433) is unstable and 
unpredictable. 
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For example, if we consider the dynamics starting from point (−1, 0.7), which is a neighboring 
point of the above fixed point, the ensuing motion is unpredictable, as is evident from the time series 
and the Phase-Plot in Fig 2(a), 2(b) respectively. 

Proceeding, as in the case of the Henon map, we obtain 
 

RC  =  














 −

11456.2797517.0

63551.128505.1
, 

 

DC  =  














 −

27862.21

05076.228505.1
, 

 

MC  =  
















797517.00

016822.1
. 

 
Then, by substituting RC , DC , MC  in (3), we get 
 

p   =  
















221349.0

5215.1
 

 
The dynamics of system (10) corresponding to a = 1.5215, b = 0.221349 have been shown in 

Figs. 2(a′ ), 2( b′ ).                                                                                                                                                                  

                                                         

                            
Fig. 2. The uncontrolled and controlled Burger’s Map 
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Fig. 2. (Continued). The uncontrolled and controlled Burger’s Map 

      
Figures 2(a), 2(b) represent Time Series and Phase Plot for uncontrolled system and Figs. 2(a′ ), 

2( b′ ) are the corresponding plots for controlled system. 
 

4. LIMITATIONS OF THE ABOVE METHOD 
 
Suppose we desire to solve the system 
 

A X = B, 
  
where A and B, respectively, m × n and m × r are known matrices and X is an n × r unknown matrix 
to be determined. 

Writing X as X ≡ )...( r21 XXX  and B as B ≡ )...( r21 BBB , where iX (i = 1, 2, …, 
r) are n × 1 columns and iB  (i = 1, 2, …, r) are m × 1 columns. 

We observe the system A X = B is consistent if and only if 
   
                                    rank (A) = rank (A  iB ), ∀ i = 1, 2, …, r                                          (11)

                                     
We rewrite equations (5), (6), (7) as: 

 
                           )( RDD CCB −  = RD AA −                                                      (12)               

     
                                                       MD CB  = RB                             (13)
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                                                       RD CB  = RA + I                (14)
     

These equations (12), (13), (14) are consistent if and only if each of these satisfy condition(s) 
(11). 

Now, we consider the following examples where the conditions (11) fail to hold. 
 

I. The Standard Map 
 

The Standard Map is described by the following pair of equations: 
 

                               




+=
++=

xkyyxg
xkyxyxf

sin),(
sin),(

,                                                  (15) 

 
where k  is a non-zero parameter. 

The fixed points of this system are )0,n( π± . 
For k = 1, the fixed point (0, 0) is unstable, and the motion about it is unpredictable. In this case, 

the matrix  DB  is 
 

DB  = 







0
0

 

 
Clearly, rank ( DB ) = 0. Now, consider equation (13), MD CB  = RB .  
Rank ( RD BB : ) ≠ 0, whatever reference point we may take in the neighborhood of (0, 0). 
∴Equation (13) is inconsistent. 
i. e. we can’t obtain MC . 
Similarly, we can show that equations (12), (14) are inconsistent. Hence, the technique fails to 

stabilize (0, 0). 
We can similarly show that the method fails to stabilize any of the fixed points )0,n( π±  of 

the above system. 
 

II. The Gumowski-Mira Map 
 

The Gumowski-Mira map is described by the following pair of equations: 
  

                                      











+
−

++−=

+
−

++−+=

2

2

2

2
2

]),([1
]),([)1(2),(),(

1
)1(2)1(),(

yxf
yxfyxfxyxg

x
xxyybayyxf

µµ

µµ
,                     (16) 

 
where a, b are constants and µ is a parameter. 

For a = 0.008, b = 0.05, µ = − 0.8, the fixed point (0, 0) is unstable. 
In this case, the matrices DA , DB  are: 

 

DA  = 







−−

−
8064.036.0
008.18.0

 

 

DB  =  







0
0

 

 



L. M. Saha / et al. 
 

Iranian Journal of Science & Technology, Trans. A, Volume 28, Number A2                                                  Summer 2004 

226 

The point (−0.9, 0), a neighboring point of (0, 0), has been taken as a reference point. 
 

                                                    RB  = 






−
35012.1

7950.1
 

 

            and                               RA  = 







−

−
397695.00960121.0
008.177796.2

   

 
Clearly, rank ( DB : RB ) ≠ 0, whereas rank ( DB ) = 0. 
∴ Equation (13) is inconsistent. 
Hence, the technique fails in the case of Gumowski-Mira map as well. 
 

5. CONCLUSION 
 

We observe that the asymptotic stability method can be applied successfully to achieve control in 
many 2, 3 or higher dimensional systems. But the technique has some limitations and can not be 
applied to all chaotic systems. So, no chaos control technique is universal. Different techniques are 
required to achieve stability in different non-linear systems. 
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