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Abstract — A chaos control method suggested by Erjace has been reviewed. It has been shown that this
technique can be applied in various evolutionary systems of 2-dimensional types. The method has been
applied for cases of the Henon map, as well as Burger’s map. The limitations of the control technique
have also been discussed by considering the Standard Map and the Gumowski-Mira map. The results
obtained through numerical calculations are very interesting and significant. This technique has some
advantages over many other techniques of chaos control in discrete systems.
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1. INTRODUCTION

The subject chaos control refers to the technique of manipulation of chaotic motion exhibited in
nonlinear systems. Such a technique proves to be useful, as chaos can be controlled in various ways to
achieve desirable results. Recent articles on chaos control, [1-11] have revealed the fact that chaos
may be of great benefit if it is applied properly to irregular and complex nonlinear systems. This new
technology of nonlinear dynamics has a significant impact on various engineering devices such as
high-performance circuits, communication signals, chemical reactions, etc. in changing irregular
behavior into regularity.

The area of chaos control is now considered as a challenge area of research and it is emerging as
an interdisciplinary field because it involves research in all areas of knowledge. Chaos control poses a
substantial challenge because of extreme sensitivity and complexity of chaotic dynamics. Also, as
almost all the systems showing chaotic behavior are of a nonlinear type, and there is no common way
to explain such behavior, chaos control techniques are different for different chaotic systems.

Erjace [12] has formulated a method for achieving asymptotic stability of a 2-dimensional
dynamical system, and has illustrated the method by applying it to a Predator-Prey system.

In this paper, we have applied the above method to 2-dimensional Henon and Burger maps to
achieve asymptotic stability. Further, we have considered the case where the above technique fails, by
discussing the Standard Map and Gumowski-Mira Map.
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2. DESCRIPTION OF METHOD

We consider the dynamics of the desired map, y ., and that of the actual one, X
following mappings:

through the

n+l°

X = F(Xn, P),
Your = F(¥n, P)-
The dynamics of the neighborhood of X ., and y_,; can be represented as
Xp = AgX, +Bgp (1)
Yo = ApY, +BpD, )
where the matrices Ag ,Ap, By, B can be obtained as follows:
Ap =D, F(x,,p)

Ap, =D, F(y,,pP)
B, = D,F(x,,p)

B, = DyF(y.,P).
Now, suppose the control input is given by
P =Cgrx, +Cyp - Cpy, ®)
On subtracting (1) from (2), and using (3), we obtain the error equation as
€na = (Ag ~BpCgle, + (Ag —Ap +B(Cp ~Cg))y,+ (Bg ~BpCy)p. )
It is clear from (4) that for asymptotic stability we need

AR_AD+BD(CD_CR):O Q)
B, -B,C, =0. (6)

Usually we have e, # 0.
Therefore, for asymptotic stability, our requirement is € ,— 0 as n— oo, and for this we must have

A, -B,C.=-1 (7

From equations (5), (6) and (7) we can obtain C, C,;, C and then from (3), we can obtain
the control parameter P .

3. APPLICATION OF CONTROL TECHNIQUE
Here below, we apply the above technique to a Henon map and Burger’s map.
(a) Control in Henon Map

Henon has considered a pair of difference equations:
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f(xy)=1+y-ax’
{ ®)
g(x,y)=bx
for given parameters a and b. - 1
The above system has 2 fixed points X = (X, Y), fora> — 2 (1-Db)? such that
[b-1£{(1-b)* +4a}?]
- 2a ©)

Y=bX

The above system exhibits a strange attractor fora= 1.4, b=0.3.

It has been observed that for such parameter values, the fixed point (0.63135448, 0.18940634) of
the Henon system is unstable and we desire to stabilize it. Also, the map is unpredictable at the
neighboring point (0.531245, 0.214678).

In this case, after some calculations, we obtain

[ -1.487486 1]
Ag = :
| 03 0]
[-1.767792544 1]
A, - .
. 03 0]

Now, settinga=a =1.4,b= b =0.3, we get

~0.28222125 0
B, - ,
0 0.531245
~0.398608479 0
B, -
0 0.63135448

Using these in equations (5), (6) and (7), we get

[1.22297  -2.50873
Ck = :
| 0.475169  1.5839 |
[1.92618  -2.50873
Cp = :
| 0475169  1.5839 |
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0.708016 0
Cu-=
0 0.841437

Then, from (3), after certain calculation we get

0.361416

0.24489

The dynamics of the uncontrolled and corresponding controlled map of the system (8) are
respectively shown in Figs. 1(a), 1(b) (uncontrolled) and 1(a"), 1(b") (controlled).

Fig.1[a] : TimeSeries

Fig.l(b) : Pha=e Flot
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Fig. 1. The uncontrolled and controlled Henon map

Figure 1(a), 1(b) represent time series and Phase Plot for uncontrolled system and Fig. 1 (a"), 1
(b") are the corresponding plots for controlled system.

(b) Control in Burger’s Map

Burger’s map, [13], is defined by the following pair of equations:

{f(x,y)=(1—a)x—y2

(10)
g(x,y)=+b)y +xy

where a and b are non-zero parameters.

This map is the discrete form of differential equations appearing in hydrodynamics.

There are two fixed points (-b, * Jab ), which are stable for b < 0.5
For a = 0.9, b = 0.856, the motion about the fixed point (—0.856, 0.87772433) is unstable and
unpredictable.
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For example, if we consider the dynamics starting from point (-1, 0.7), which is a neighboring
point of the above fixed point, the ensuing motion is unpredictable, as is evident from the time series
and the Phase-Plot in Fig 2(a), 2(b) respectively.

Proceeding, as in the case of the Henon map, we obtain

1.28505 -1.63551
Cp = ,
0.797517 2.11456
[1.28505 -2.05076 |
C, = ,
i 1 2.27862 |
[1.16822 0 |
Cy =
] 0 0.797517 |

Then, by substitutingCr,Cp,Cy in (3), we get
1.5215
D =
0.221349

The dynamics of system (10) corresponding to a = 1.5215, b = 0.221349 have been shown in

Figs. 2(a"), 2(b").
Fig.2(3] : TimeSerias
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Fig. 2. The uncontrolled and controlled Burger’s Map
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Fig. 2. (Continued). The uncontrolled and controlled Burger’s Map

Figures 2(a), 2(b) represent Time Series and Phase Plot for uncontrolled system and Figs. 2(a"),

2(b") are the corresponding plots for controlled system.

4. LIMITATIONS OF THE ABOVE METHOD

Suppose we desire to solve the system

AX=B,

where A and B, respectively, m x n and m x r are known matrices and X is an n x r unknown matrix

to be determined.

Writing X as X= (X, X, ... X,)andBasB= (B; B, ... B, ), where X;(i=1,2, ...,
r)aren x 1 columnsand B, (i=1,2, ...,r) are m x | columns.
We observe the system A X = B is consistent if and only if

rank (A) =rank (A B;),Vi=1,2,...,r

We rewrite equations (5), (6), (7) as:

BD(CD_ CR) =Ap - Ag

B,Cy = By
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B,C;=A; +1 (14)

These equations (12), (13), (14) are consistent if and only if each of these satisfy condition(s)

(11).

Now, we consider the following examples where the conditions (11) fail to hold.
I. The Standard Map

The Standard Map is described by the following pair of equations:

{f(x,y)=x+y+ksinx

15
g(x,y)=y+ksinx (15)

where k is a non-zero parameter.
The fixed points of this system are (xnm, 0).
For k = 1, the fixed point (0, 0) is unstable, and the motion about it is unpredictable. In this case,

(o)

Clearly, rank (Bp ) = 0. Now, consider equation (13), B, C,, = By .
Rank (Bp, : By ) # 0, whatever reference point we may take in the neighborhood of (0, 0).
..Equation (13) is inconsistent.

the matrix By is

i. e. we can’t obtain C,;.

Similarly, we can show that equations (12), (14) are inconsistent. Hence, the technique fails to
stabilize (0, 0).

We can similarly show that the method fails to stabilize any of the fixed points (fnmn, O) of
the above system.

II. The Gumowski-Mira Map

The Gumowski-Mira map is described by the following pair of equations:

f(an’)=y+a(1—by2)y+,ux+%
201- L (5, T (1o

_ L (e

glx,y)=—x+uf(x,y)+ L+ [f(x, »T

where a, b are constants and p is a parameter.
For a=0.008, b=0.05, p =— 0.8, the fixed point (0, 0) is unstable.
In this case, the matrices Ay, B are:

) ( -0.8  1.008 j

D

-0.36 -0.8064

(o)
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The point (—0.9, 0), a neighboring point of (0, 0), has been taken as a reference point.
-1.7950
By =
1.35012
B (—2.77796 1.008 j
R =

and

0.0960121 -0.397695

Clearly, rank (B :Bg)# 0, whereas rank (B ) =0.
.. Equation (13) is inconsistent.
Hence, the technique fails in the case of Gumowski-Mira map as well.

5. CONCLUSION

observe that the asymptotic stability method can be applied successfully to achieve control in

many 2, 3 or higher dimensional systems. But the technique has some limitations and can not be

applied to all chaotic systems. So, no chaos control technique is universal. Different techniques are

required to achieve stability in different non-linear systems.
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