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Abstract – Let M  be an n-dimensional Riemannian manifold and TM  its tangent bundle. The 
conformal and fiber preserving vector fields on TM  have well-known physical interpretations and have 
been studied by physicists and geometricians. Here we define a Riemannian or pseudo-Riemannian lift 
metric g�  on TM , which is in some senses more general than other lift metrics previously defined on 
TM , and seems to complete these works. Next we study the lift conformal vector fields on ( )TM g,�  and 
prove among the others that, every complete lift conformal vector field on TM  is homothetic, and 
moreover, every horizontal or vertical lift conformal vector field on TM  is a Killing vector.  
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1. INTRODUCTION 
 

Let M  be an n-dimensional differential manifold with a Riemannian metric g  and φ  be a 
transformation on M . Then φ  is called a conformal (resp. projective) transformation if it preserves 
the angles (resp. geodesics). Let V  be a vector field on M  and { }tϕ  be the local one-parameter 
group of local transformations on M  generated by V . Then V  is called an infinitesimal conformal 
(resp. projective) transformation on M  if each tϕ  is a local conformal (resp. projective) 
transformation of M . It is well known that V  is an infinitesimal conformal transformation or 
conformal vector field on M  if and only if there is a scalar function ρ  on M  such that 

V
£ g = 2 gρ , 

where 
V
£ denotes Lie derivation with respect to the vector field V . V  is called homothetic if ρ  is 

constant and is called an isometry or Killing vector field when ρ  vanishes. 
Let TM  be the tangent bundle over M , and Φ  be a transformation on TM . Then Φ  is called a 

fiber preserving transformation if it preserves the fibers. Fiber preserving transformations have well 
known applications in Physics. Let X  be a vector field on TM  and { }tΦ  the local one parameter 
group of local transformation on TM  generated by X . Then X  is called an infinitesimal fiber 
preserving transformation or fiber preserving vector field on TM  if each tΦ  is a local fiber 
preserving transformation of TM . 

Let g�  be a Riemannian or pseudo-Riemannian metric on TM . The conformal vector field X  on 
TM  is said to be essential if the scalar function Ω  on TM  in 

X
£ g =� 2 gΩ�  depends only on ( )hy  (with 
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respect to the induced coordinates ( )i ix y,  on TM ), and is said to be inessential if Ω  depends only on 
( )hx . In other words, Ω  is a function on M .  

There are some lift metrics on TM  as follows:  
complete lift metric or 2g , diagonal lift metric or 1 3g g+ , lift metric 2 3g g+  and lift metric 1 2g g+ .  

In this area the following results are well known:  
Let ( )M g,  be a Riemannian manifold. If we consider TM  with metrics 1 3g g+  or 2 3g g+ , then 
every infinitesimal fiber preserving conformal transformation on TM  is homothetic, and induces a 
homothetic vector field on M  [1]. 

Let ( )M g,  be a complete, simply connected Riemannian manifold. If we consider TM  with 
metric 1 2g g+ , and TM  admits an essential infinitesimal conformal transformation, then M  is 
isometric to the standard sphere [2]. 

Let ( )M g,  be a Riemannian manifold and V  a vector field on M  and let CX , VX , HX  be 
complete, vertical and horizontal lifts of V  to TM  respectively. If we consider TM  with metric 2g , 
then CX  is a conformal vector field on TM  if and only if V  is homothetic on M . Moreover, if V  is 
a Killing vector on M , then CX  and VX  are Killing vectors on TM  [3]. 

Let ( )M g,  be a Riemannian manifold. If we consider TM  with metric 1 3g g+ , then  
I) CX  is a conformal vector field if and only if X  is homothetic. 
II) VX  is a conformal vector field if and only if X  is Killing vector field with vanishing  
second covariant derivative in M . 
III) HX  is a conformal vector field if and only if X  is parallel [3], [4]. 

In this paper we are going to replace the cited lift Riemannian or pseudo-Riemannian metrics on 
TM  by 1 2 3g ag bg cg= + +� , that is a combination of diagonal lift and complete lift metrics, where a , 
b  and c  are certain positive real numbers. More precisely, we prove the following Theorems.  
 
Theorem 1. Let M  be a connected n-dimensional Riemannian manifold and let TM  be its tangent 
bundle with metric g� . Then every complete lift conformal vector field on TM  is homothetic, and 
moreover, every horizontal or vertical lift conformal vector field on TM  is a Killing vector.  
 
Theorem 2. Let M  be a connected n-dimensional Riemannian manifold and TM  be its tangent 
bundle with metric g� . Then every inessential fiber preserving conformal vector field on TM  is 
homothetic.  
 

2. PRELIMINARIES 
 
Let ( )M g,  be a real n-dimensional Riemannian manifold and ( )U x,  a local chart on M , where the 
induced coordinates of the point p U∈  are denoted by its image on nIR ,  ( )x p  or briefly ( )ix . Using 
the induced coordinates ( )ix  on M , we have the local field of frames { }

ix
∂
∂  on pT M . Let ∇  be a 

Riemannian connection on M  with coefficients k
ijΓ , where the indices a b c h i j k m, , , , , , , ,...  run over the 

range 1 2 n, ,... . The Riemannian curvature tensor is defined by  
 

[ ]( ) ( )Y X X Y XYK X Y Z Z Z Z X Y Z X M,, = ∇ ∇ −∇ ∇ +∇ ,∀ , , ∈ .  
 
Locally we have  
 

m m m m a m a
i jk j ik ia jk ja ikijkK = ∂ Γ − ∂ Γ + Γ Γ − Γ Γ ,  

 
where ii x

∂
∂∂ =  and ( )

m
i j k mijkK K∂ ,∂ ,∂ = ∂ .  
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3. NON-LINEAR CONNECTION 
 
Let TM  be the tangent bundle of M  and π  the natural projection from TM  to M . Consider 
TTM TMπ∗ : 6  and let us put 

 
{ ( ) 0}v vker z TTM z v TMπ π∗ ∗= ∈ | = ,∀ ∈ .  

 
Then the vertical vector bundle on M  is defined by 

v TM

vVTM kerπ
∈

∗= ∪ . A non-linear 
connection or a horizontal distribution on TM  is a complementary distribution HTM  for VTM  on 
TTM . The non-linear nomination arise from the fact that HTM  is spanned by a basis which is 
completely determined by non-linear functions. These functions are called coefficients of non-linear 
connection and will be noted in the sequel by j

iN . It is clear that HTM  is a horizontal vector bundle. 
By definition, we have decomposition TTM VTM HTM= ⊕  [5]. 

Using the induced coordinates ( )i ix y,  on TM , where ix  and iy  are called respectively position 
and direction of a point on TM , we have the local field of frames { }

i ix y
∂ ∂
∂ ∂,  on TTM . Let { }i idx dy,  

be the dual basis of { }i ix y
∂ ∂
∂ ∂, . It is well known that we can choose a local field of frames { }

ii yX ∂
∂,  

adapted to the above decomposition, i.e. ( )iX X HTM∈  and ( )
iy
X VTM∂

∂ ∈  are sections of horizontal 
and vertical sub-bundle on HTM  and VTM , defined by 

i j

j
i ix yX N∂ ∂

∂ ∂= − , where ( )j
iN x y,  are 

functions on TM  and have the following coordinate transformation rule in local coordinates ( )i ix y,  
and ( )i ix y′ ′,  on TM .  
 

2
( )

h i h
h h a

ihi i i a
x x xN N y
x x x x

′
′ ′
′ ′ ′ ′

∂ ∂ ∂= + .
∂ ∂ ∂ ∂

 
 

To see a relation between linear and non-linear connections let k
j iΓ  be the coefficients of the 

Riemannian connection of ( )M g, . Then it is easy to check that ka
a iy Γ  satisfies the above relation and 

thus can be regarded as coefficients of the non-linear connection on TM  in the sequel.  
Let us put mh

ma
h a h yx
X y∂ ∂

∂∂= − Γ  and hh y
X ∂

∂= . Then { }h hX X,  is the adapted local field of 
frames of TM  and let { }h hdx yδ,  be the dual basis of { }h hX X, , where hh h a i

a iy dy y dxδ = + Γ  and the 
indices i j h, , ,...  and i j h, ,  ... run over the range 1, 2, ...n.  
 

4. THE RIEMANNIAN OR PSEUDO-RIEMANNIAN 
 METRIC g�  ON TANGENT BUNDLE 

 
Let ( )M g,  be a Riemannian manifold. The Riemannian metric g  has components ijg , which are 
functions of variables ix  on M , and by means of the above dual basis it is well known that [3]; 
1

i j
ijg g dx dx:= , 2 2 i j

ijg g dx yδ:=  and 3 i j
ijg g y yδ δ:=  are all bilinear differential forms defined globally 

on TM . 
The tensor field:  

 
1 2 3g ag bg cg= + + ,�  

 
on TM  where a , b  and c  are certain positive real numbers, has components  
 

ij ij

ij ij

ag bg

bg cg

   ,  
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with respect to the dual basis of the adapted frame of TM . From linear algebra we have 
2 2( )ndetg ac b detg= −� . Therefore g�  is nonsingular if 2 0ac b− ≠  and positive definite if 2 0ac b− >  

and define, respectively, pseudo-Riemannian or Riemannian lift metrics on ( )T M . 
 

5. LIE DERIVATIVE 
 
Let M  be an n-dimensional Riemannian manifold, V  a vector field on M , and { }tφ  any local group 
of local transformations of M  generated by V . Take any tensor field S  on M , and denote by ( )t Sφ ∗  
the pull-back of S  by tφ . Then Lie derivation of S  with respect to V  is a tensor field 

V
£ S  on M  

defined by  
 

0 0

( ) ( )( ) lim
V

t
t t t

S S£ S S
t t

φφ
∗

∗
= →

∂ −= | = ,
∂

 

 
on the domain of tφ . The mapping 

V
£  which maps S  to ( )

V
£ S  is called the Lie derivative with 

respect to V . 
Suppose that S  is a tensor field of type ( )n m, . Then the components 1

1
( ) n
V m

j j
i i£ S ,...,
,...,  of 

V
£ S  may be 

expressed as [6] 
 

1 1 1 1
1 1 1 1

1 1
( ) n n n nk
V km m m m

m n
j j j j j j j a ja a j

a i ai i i i i a i i i
k k

£ S V S V S V S,..., ,..., ,..., ,..., ,...,
,..., ,..., ,..., ,..., ,...,

= =
= ∂ + ∂ − ∂ ,∑ ∑  

 
where 1

1
n
m

j j
i iS ,...,
,...,  and aV  denote the components of S and V.  

The local expression of the Lie derivative ( )
V
£ S  in terms of covariant derivatives on a 

Riemannian manifold for a tensor field of type (1, 2) is given by:  
 
                                         

V

h h a h ha h a a
a a j ij i j i j i a i j a£ S v S S v S v S v= ∇ − ∇ + ∇ + ∇ ,                                 (1) 

 
where, h

j iS  and hv  are components of S and V, and h
a j iS∇ , h

av∇  are components of covariant 
derivatives of S and V, respectively [1, 3, 6]. 
 
Lemma 1. [1], [7] The Lie bracket of adapted frame of TM  satisfies the following relations  
 

[ ]
mr

i j mjirX X y K X, = ,  
 

[ ]
m

i mj ijX X X, = Γ ,  
 

[ ] 0i jX X, = ,  
 
where m

jirK  denotes the components of a Riemannian curvature tensor of M .  
 
Lemma 2. [1] Let X  be a vector field on TM  with components ( )h hX X,  with respect to the 
adapted frame { }h hX X, . Then X  is fiber-preserving vector field on TM  if and only if hX  are 
functions on M .  
Therefore, every fiber-preserving vector field X  on TM  induces a vector field 

h

h
xV X ∂

∂=  on M .  
 
Definition 1. [1], [3] Let V  be a vector field on M  with components hV . We have the following 
vector fields on TM  which are called respectively, complete, horizontal and vertical lifts of V : 
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( )hC h m a h
h m a m h

H h
h

V h
h

X V X y V V X

X V X

X V X

:= + Γ + ∂ ,

:= ,

:= .

 

 
From Lemma 2 we know that C HX X,  and VX  are fiber-preserving vector fields on TM . 
 
Lemma 3. [1] Let X  be a fiber-preserving vector field on TM . Then the Lie derivative of the 
adapted frame and its dual basis are given by: 
I) ( ) { ( )}

X

a aa b c b a
h h a h ahcb b h£ X X X y X K X X X X= −∂ + − Γ − ,  II) { ( )}

X

ab a
ab hh h£ X X X X X= Γ − ,  

III) ( )
X

h h m
m£ dx X dx= ∂ ,  

IV) { ( )} { ( )}
X

h h hh b c b h m b h m
m mmcb b m b m£ y y X K X X X dx X X X yδ δ= − − Γ − − Γ − .   

 
Lemma 4. [8] Let X  be a fiber-preserving vector field on TM , which induces a vector field V  on 
M . Then Lie derivatives 1X

£ g , 2X
£ g  and 3X

£ g  are given by: 
I) 1 ( )

X V
i j

ij£ g £ g dx dx= ,  

2) 2[ { ( )}

{ ( )} ]

X

V

m mb c b m i j
jm iicb b i

m m j i
ij jm i jm i

II £ g g y X K X X X dx dx

£ g g X g X X dx yδ

= − − Γ − +

− ∇ + ,

3) 2 { ( )}

{ 2 2 ( )}

X

V

m mb c b m j i
mi jjcb b j

m m i j
ij mj i mj i

III £ g g y X K X X X dx y

£ g g X g X X y y

δ

δ δ

= − − Γ − +

− ∇ + ,
 

where 
V ij£ g  and m

iX∇  denote the components of 
V
£ g  and the covariant derivative of V  

respectively.  
 

6. MAIN RESULTS 
 
Proposition 1. Let X  be a complete (resp. horizontal or vertical) lift conformal vector field on TM . 
Then the scalar function ( )x yΩ ,  in 2

X
g£ g = Ω��  is a function of position alone (resp. 0Ω = ).  

 
Proof: Let TM  be the tangent bundle over M  with Riemannian metric g�  and X  be a complete 
(resp. horizontal or vertical) lift conformal vector field on TM . By definition, there is a scalar 
function Ω  on TM  such that 
  

2
X
£ g g= Ω .� �  

 
Since the complete horizontal and vertical lift vector fields are fiber preserving, by applying 

X
£  

to the definition of g� , using Lemma 4 and the fact that i jdx dx , i jdx yδ  and i jy yδ δ  are linearly 
independent, we have following three relations 
 

                                     
( 2 ) ( ( ))

( ( ))]

V

m mb c b m
ij ij im jjcb b j

m mb c b m
jm iicb b i

a £ g g bg y X K X X X

g y X K X X X

− Ω = − Γ −

+ − Γ − ,
                                (2) 

 

                                    
( 2 ) ( ( ))

( ( ))

V
m m

ij ij im j j
m mb c b m

jm iicb b i

b £ g g bg X X X

cg y X K X X X

− Ω = ∇ −

+ − Γ − .
                                (3) 
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Using relation 1, we have 
V ij i j j i£ g V V= ∇ + ∇ , from which we obtain  

 
                                                      2 ( ) ( )m m

ij mj mii jg g X X g X XΩ = + .                                                   (4) 
 

Applying kX  to the relation 4 and using the fact that ijg  is a function of position alone, we have 
 
                                               2 ( ) ( ) ( )m m

ij mj mii jk k kg X g X X X g X X XΩ = + .                                            (5) 
  

By means of definition 1 for complete lift vector fields, and by replacing the value of mX  in 
relation 5, we have  
 

2 ( ) ( ( )) ( ( ))
m ml a m l a m

ij mj l mi li jl a l ak k kg X g X X y V V g X X y V VΩ = Γ + ∂ + Γ + ∂ .  
 

Since the coefficients of the Riemannian connection on M , and components of vector field V  
are functions of position alone, the right hand side of the above relation becomes zero, from which we 
have ( ) 0kX Ω = . This means that the scalar function ( )x yΩ ,  on TM  depends only on the variables 
( )hx .  

Similarly, for vertical lift vector fields, by using the fact that the components of V  are functions 
of position alone and from relation 4, we have 0Ω = . Finally, for horizontal lift vector field by 
means of relation 4, we have 0Ω = . 
 
Proposition 2. Let M  be a connected manifold and X  be a complete lift conformal vector field on 
TM . Then the scalar function ( )x yΩ ,  in 2

X
g£ g = Ω��  is constant. 

  
Proof: Let X  be a complete lift conformal vector field on TM  with components ( )h hX X, , with 
respect to the adapted frame { }h hX X, . 

Let us put  
 

mm h m
a aa hA X X= Γ + ∂ .  

 
The coordinate transformation rule implies that m

aA  are the components of (1, 1) tensor field A . 
Then its covariant derivative is  
 

m m m k k m
i a i a i k a i a kA A A A∇ = ∂ + Γ − Γ ,  

 
where m

i aA∇  is the component of the covariant derivative of tensor field A .  
From definition 1, m m a

aX A y= . By means of relation 3, we have  
 

[ 2 ( )] [ ( )]
V

m mm m a c k a m h
ij ij im j j jm a i hica k ib £ g g g X A cg y X K A y X A y− Ω − ∇ − = − Γ − .  

 
Note that the components of A  are functions of position alone, from which the right hand side of 

this relation becomes  
 

[ ( )( )]
m m ka c k a a m h

jm a hica a ik i i kcg y X K A y y A y
x y
∂ ∂− Γ − − Γ
∂ ∂

 

 
[ ]i

m m ka c k a a m m a
jm a a kica a ik i xcg y X K A y y A A y∂

∂= − Γ − + Γ  
 

( )a c m
icaj mj i acy X K g A= − ∇ .  
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Thus we have 
 

[ 2 ( )] ( )
V

m m a c m
ij ij mi j j icaj mj i ab £ g g g X A cy X K g A− Ω − ∇ − = − ∇ .  

 
By means of Proposition 1 the left hand side of the above relation is a function of position alone. 

Applying kk y
X ∂

∂=  to this relation gives  
 

0c m
icaj mj i aX K g A− ∇ = ,  

 
Or 
  

c
icaj i jaX K A= ∇ .  

 
From which  
 
                                                                   0i ja i ajA A∇ +∇ = .                                                             (6)  

 
Now by replacing mX  in relation 4 

 
2 { ( )} { ( )}

m mh a m h a m
ij mj h mi hi jh a h ag g X y X X g X y X XΩ = Γ + ∂ + Γ + ∂  

 
( ) ( )
m ma m a m

mj i mi ji a j ag X X g X X= Γ + ∂ + Γ + ∂  
 

m m
mj i mi jg A g A= + .  

 
Applying covariant derivation k∇  to this relation gives 

 
2 ij k k ji k ijg A A∇ Ω = ∇ + ∇ .  

 
From relation 6, we get 0

hk x
∂

∂∇ Ω = Ω = .  
Since M  is connected, the scalar function Ω  is constant.  

 
Theorem 1. Let M  be a connected n-dimensional Riemannian manifold and TM  be its tangent 
bundle with metric g� . Then every complete lift conformal vector field on TM  is homothetic, 
moreover, every horizontal or vertical lift conformal vector field on TM  is a Killing vector. 
 
Proof: Let M  be an n-dimensional Riemannian manifold, TM  its tangent bundle with the metric g�  
and X  a complete (resp. horizontal or vertical) lift conformal vector field on TM . Then by means of 
Proposition 1 the scalar function ( )x yΩ ,  in 2

X
g£ g = Ω��  is a function of position alone (resp. 0Ω = ), 

and by means of Proposition 2 it is constant. Thus, every complete lift conformal vector field on TM  
is homothetic and every horizontal or vertical lift conformal vector field on TM  is a Killing vector.  
Theorem 2. Let M  be a connected n-dimensional Riemannian manifold and TM  be its tangent 
bundle with metric g� . Then every inessential fiber preserving conformal vector field on TM  is 
homothetic.  
 
Proof: Let X  be an inessential fiber preserving conformal vector field on TM  with components 
( )h hX X, , with respect to the adapted frame { }h hX X, . Using the same argument in proof of 
Proposition 1, it is obvious that we have relations 2, 3 and 4. From relation 4, we have 
  

( )mii mi ig g X XΩ = .  
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Since ( )x yΩ ,  in 
X
£ g =� 2 gΩ�  is supposed to be a function of position alone, by applying iX  to 

the above relation we have  
 

( ( )) 0m
i iX X X = .  

 
Applying iX  to relation 4 again and using above relation gives  
 

( ( )) 0m
i jX X X = .  

 
Thus we can write  

 
                                                                  m m a m

aX yα β= + ,                                                              (7) 
 
where m

aα  and mβ  are certain functions of position alone. Replacing relation 7 in relation 3, we have 
 

(
V ijb £ g −2 ) ( ) (

m m mm m b c a b b
ij im j j jm aicb b i b ig bg X cg y X K yα α βΩ = ∇ − + − Γ − Γ −  

 
)

i i

ka m m a m
a ka ix xy yα β α∂ ∂

∂ ∂− + Γ  
 

( ) ( )
mm m b c a m m

im j j jm i a jm iicbbg X cg y X K y cgα α β= ∇ − + − ∇ − ∇ .  
 

Therefore  
(
V ijb £ g −2 ( )) ( )

mm m m a c m
ij im j j jm i jm i aicag g X cg cg y X Kα β αΩ − ∇ − + ∇ = −∇ .   

 
The left hand side of this relation is a function of position alone. From which by applying kX  we 

have 
 
                                                                    mc m

i aicaX K α= ∇ .                                                            (8) 
 

Replacing relation 7 in relation 4 we find 
 

2 ij ji ijg α αΩ = + .  
 

The covariant derivative of this relation and using relation 8 gives  
 

0k
hx

∂∇ Ω = Ω = .
∂

 
 

Since M  is connected, then the scalar function Ω  on M  is constant. This completes the proof of 
Theorem 2.  
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