EXTREMAL ORDERS INSIDE SIMPLE ARTINIAN RINGS*

N. H. HALIMI**

84 Manburgh Tce, Darra, QLD 4076, Australia
Email: n_h_halimi@yahoo.com.au

Abstract – The aim of this paper is to study orders over a valuation ring V with arbitrary rank in a central simple F-algebra Q. The relation between all of the orders is explained with a diagram. It is then shown that inside Bezout order, extremal V-orders are precisely semi-hereditary. In the last section, the effect of Henselization on maximal and semi-hereditary orders is examined.

Keywords – Dubrovin valuation rings, extremal orders, Henselization

1. INTRODUCTION

In this paper, all rings are associative with a multiplicative unit and all modules are unitary. If A is a ring, $J(A)$ will denote its Jacobson radical, $U(A)$ its group of units, $Z(A)$ its center, A^* its set of nonzero divisors, and $M_n(A)$ the ring of $n \times n$ matrices over A. The residue ring $A/J(A)$ will be denoted by \overline{A}. And Q denotes a simple artinian ring with finite dimension over its center $Z(Q)$, while D denotes a division ring.

In the second section we briefly discuss some of the ring theoretic properties and definitions.

In the third section we will see that semihereditary V-orders are extremal V-orders and obtain a diagram of maximal V-orders when V is a Henselian valuation ring.

In the fourth section we show that inside Bezout orders, extremal V-orders are precisely semihereditary, which is a generalization of Proposition 2.1 of [1].

In the last section we will examine the effect of Henselization on maximal and semihereditary orders.

2. DEFINITION AND PRELIMINARIES

In this paper F denotes a field and Q is a central simple F-algebra, i.e., Q is a F-Algebra with $[Q:F]<\infty$ and $F=Z(Q)$.

The most successful extension of the classical valuation theory on F to Q is the one introduced by Dubrovin in [2] and [3].

Definition 2.1. A subring B of a central simple F-algebra Q is called a Dubrovin valuation ring in Q if

1. B has an ideal M such that B/M is a simple artinian ring and
2. For each $q \in Q\setminus B$ there exist $b, a \in B$ such that $bq, qa \in B\setminus M$.

*Received by the editor July 25, 2003 and in final revised form September 10, 2005
**Corresponding author
The following properties of Dubrovin valuation rings were proved by Dubrovin in [2, 3].

i) The two sided ideals of B are totally ordered by inclusion, where two sided ideals are a B-bimodule of Q. Therefore we have $M=J(B)$.

ii) Each finitely generated left (resp, right) ideal of B is principal.

iii) (a) Let V be a valuation ring of F, then there exists a Dubrovin valuation ring of B in Q such that $B∩F=V$, [2-4].

(b) If B, and B' are two Dubrovin valuation rings of Q extending V, then $B'=dBd^{-1}$ for some $d ∈ Q^*$ [5, 6].

Therefore, for every valuation ring V of $F=Z(Q)$, there is a unique (up to conjugate) associated Dubrovin valuation ring B of Q. It is reasonable to expect that B will carry much information about the arithmetic of Q in relation to V, (see [7] Theorem 3.4 and [8] Theorem 3.7).

Definition 2.2. Let Q be a finite-dimensional F-Algebra and V a ring with quotient field F. A subring R of Q is said to be an order in Q if $RF=Q$. If $V=Z(R)$, then R is said to be a V-order if, in addition, R is integral over V. If R is maximal with respect to inclusion among V-order of Q, then R is said to be a maximal order over V.

a) In the case V is a discrete valuation ring, then by ([9], 18.6 and 18.2) any V-order in a central simple F-algebra is a finite V-module, so for such V, Definition 2.2 agrees with the usual one, as in [10].

b) In this paper we assume V is a commutative valuation ring in F of arbitrary Krull-dimension. The integrality hypothesis in the above definition is used to guarantee the existence of maximal orders for any Q and V. But finitely generated maximal V-orders need not exist, (see [7] Proposition 2.3).

c) Let V be a valuation ring of a field F, and Q a central simple F-Algebra. If B is an integral Dubrovin extension of V to Q (i.e., B is a Dubrovin valuation ring of Q such that B is integral over V and $V=B∩F$) then B is a maximal V-order (by Example 2.2 [7]).

Definition 2.3. A ring R is said to be extremal if for every overring S such that $J(R) ⊆ J(S)$ we have $S=R$. If S is an overring of R, we say that R is extremal in S if R is extremal among all subrings of S. A V-order R is said to be an extremal V-order (or just extremal when the context is clear) if it is extremal among all V-orders in Q.

Definition 2.4. A ring R is said to right (resp left) Bezout if every finitely generated right (left) ideal is principal. It is called Bezout if it is both right and left Bezout.

If V is a valuation ring, then there exists a Bezout V-order B in Q and each Bezout V-order is a maximal order by ([7] Theorem 3.4), and if B, and B' are two Bezout V-orders, then B, and B' are conjugate (by Theorem 6.12 [4]).

Definition 2.5. A ring R is said to be right semihereditary (resp right hereditary) if every finitely generated right ideal (resp every right ideal) is projective as a right R-module. A ring is said to be semihereditary (resp hereditary) if it is both left and right semihereditary (resp hereditary).

a) If V be Dedekind domain with quotient field F and Q is a central simple F-Algebra, where $Q ≅ M_n(D)$ and D is a division ring with center F, then R is a hereditary V-order if and only if R is an extremal (see 39.14 [10]).

b) Let V be a valuation ring of $F=Z(Q)$ and Q a central simple F-Algebra. J.S. Kauta proved that every semihereditary V-Order is extremal (see Theorem 1.5 [11]), but the converse is not true. If F is
a field, $Q=M_2(F)$, V_n is a discrete valuation ring of dimension n, and R is a maximal V_n-order in Q, then there are three possibilities for the isomorphism class of R.

(1) $R \cong M_2(V_m)$, where V_m is the overring of V_n of dimension m. In this case R is a Bezout.

(2) $R \cong \begin{bmatrix} V_m & J(V_p) \\ V_p & V_m \end{bmatrix}$, where $m < p$. In this case R is semihereditary, but not Bezout.

(3) R is primary (i.e., $J(R)$ is a maximal ideal of R) but not Bezout (see [7], Theorem 5.7). Let R be maximal V-order in $M_2(F)$ which is primary, but not Bezout. Such an order cannot be semihereditary, since any primary semihereditary order is a Dubrovin valuation ring ([3]: Theorem 4), and hence Bezout.

3. MAXIMAL ORDERS OVER HENSELIAN VALUATION RINGS

In this section D always means a finite dimensional algebra with center F. A subring B of D is said to be a total valuation ring in D if $d \in B$ or $d^i \in B$ for all nonzero $d \in D$.

We recall that a valuation ring V in a field F is Henselian when Hensel’s Lemma holds for V, i.e., for every monic polynomial $f \in V[x]$, if its image $\tilde{f} \in \overline{V}[x]$, where $\overline{V} = V/J(V)$ has a factorization $\tilde{f} = \tilde{g}\tilde{h}$ on $\overline{V}[x]$ with \tilde{g},\tilde{h} monic and $\gcd(\tilde{g},\tilde{h})=1$, then there exist monic $g,h \in V[x]$ with $f = gh$, $\overline{g} = \tilde{g}$ and $\overline{h} = \tilde{h}$, where \overline{g} and \overline{h} are images g and h respectively.

There are several other equivalent characterizations of the Henselian valuation ring, but the most relevant here is the following.

A valuation ring V in a field F is Henselian if V has a unique extension to each field $F \subseteq K$ with K algebraic over F (see [9] Corol.16.6 for a proof).

Now let D be a division algebra finite dimensional over its center $Z(D)=F$, and V a Henselian valuation ring of F. Schilling ([12] P.53, Theorem 9) proved that the integral closure V in D forms a ring B. The ring B is a total valuation ring of V and by ([13], Theorem 1) and B is the unique extension V to D. Therefore B is an invariant valuation ring of D (i.e., $dBD = B$ for any $d \in D^*$).

Theorem 3.1. Let D be a division algebra admitting a total valuation ring extending V. Then the integral closure of V in D is the unique extremal V-order (and hence the unique semihereditary V-order) in D.

Proof: By ([14]: Lemma 2) V has only a finite number of extensions to D. If $B_1,...,B_n$ are all the extensions of V, then B_i and B_j are conjugate for all i,j by ([14]: Theorem 2). Let $T=\text{Int}_D(V)$ be the integral closure of V in D. Then $T=\bigcap_{i=1}^n B_i$ by ([14]: Theorem 3). Let R be an extremal V-order.

Then $R \subseteq T$, because R is integral over V. But both R and $J(B_i)$ contain $J(V)$. Hence for each i, $R/(J(B_i) \cap R)$ is finite dimensional over $V/J(V)$. But one has the embedding $R/(J(B_i) \cap R) \rightarrow B_i/J(B_i)$ and $[B_i/J(B_i): V/J(V)] \leq [D:F] < \infty$ by ([14]: Lemma 3). It follows that $R/(J(B_i) \cap R)$ is division algebra, and hence $J(B_i) \cap R$ is a maximal ideal of R. Hence, $J(R) \subseteq J(B_i) \cap R$.

Let $x \in \bigcap_i J(B_i)$ and $a,b \in J(T)$. Then $1-axb \in U(B_i)$ for all i, and thus $1-axb \in U(T)$. Therefore $x \in J(T)$. Hence $J(R) \subseteq \bigcap_i J(B_i) \subseteq J(T)$. Since R is extremal, we must have $R=T$.

Autumn 2005
Iranian Journal of Science & Technology, Trans. A, Volume 29, Number A3
On the other hand, T is a Bezout V-order by ([7]: Theorem 3.4) and every such T is a semihereditary V-order in D.

Corollary 3.2. Let V be a valuation ring of F, and D suppose admits and invariant valuation ring B extending V. Then B is the unique extremal (and hence the unique semihereditary) V-order in D.

Proof: Since the extensions of V to D are conjugate, B is the unique extension of V to D. So the corollary follows from Theorem 3.1.

In the rest of the section we assume V to be a Henselian valuation ring of F, and D be a finite dimensional division algebra over its center $\mathbb{Z}(D)=F$.

Let B be the unique extension of V to D, and let β be the set of all nonzero B-submodules of D. Then β is totally ordered. For if I and J are two B-submodules of D such that $I \nsubseteq J$, there exists an $a \in I-J$. Then if $b \in J$, then $ab^{-1} \notin B$; thus $ba^{-1} \in B$, and hence $b \in Ba \subseteq I$. Thus $J \subseteq I$.

Definition 3.3. Let I be a B-submodule of D. We define I^1 to be \{ $d \in D$: $dI \subseteq B$ \}.

Definition 3.4. Let $Q=M_n(D)$. An order $R=(Bi,j)$ is said to be of type ΦH if

\[
\begin{bmatrix}
B_i \cdots & B_i \ldots \\
& \vdots & \ddots & \vdots \\
& \ddots & \ddots & B_i \\
B_{i,1} & B_{i,2} & \cdots & B_{i,n}
\end{bmatrix}
\]

i) $Bi,j \in \beta$.

ii) If $d \notin Bi,j$, then $d^{-1} \in Bi,j$ for all $d \neq 0 \in D$. (Morandi’s condition).

iii) $Bi,jBi,s \subseteq Bi,s$ for all $1 \leq r,s,j \leq n$.

We denote R by (Bi,j).

Lemma 3.5. (a) R is a ring and $RF=RD=Q$, i.e., R is an order.

(b) $Bi,j \subseteq B \subseteq Bi,j$ or $Bi,j \subseteq B \subseteq Bi,j$ for all i,j.

Proof: (a) by (iii) R is a ring, because $Bi,j \neq 0$ for all i,j, therefore $RF=RD=Q$.

For (b) since β is totally ordered, we have $Bi,j \subset B$ or $B \subseteq Bi,j$. If $Bi,j \subset B$, then $1 \notin Bi,j$, and hence, $1 \in Bi,j$.

If $B \subseteq Bi,j$, then $Bi,jBi,j \subseteq Bi,j=B \Rightarrow Bi,j=Bi,jI \subseteq B$, and hence $Bi,j \subseteq B \subseteq Bi,j$.

Lemma 3.6. (Morandi) Let $Q=M_n(D)$ and $R=(Bi,j)$. Then xR is projective as a R-module for all $x \in Q$.

Proof: We first suppose xR is projective for all $x \in e_iR$ for any i. We prove xR is projective for any x (where $e_{i,j}$ is matrix $n \times n$ with 1 in (i,j) entry and zero in the others). We do this by showing that $e_{i,xR}$ is projective, where $e_{i}x=e_{i,1}+e_{i,2}+\ldots+e_{i,n}$. We use induction on i, the case $i=1$ is true by assumption (because if $x=(d_{i,j})$ then $xe_{1,i}R=(xe_{1,i})R$, and since $xe_{1,i}=d_{1,i}e_{1,1}$ and $d_{1,i} \in B_{i,i}$ or $d_{1,i} \in B_{i,j}$, therefore $xe_{1,i} \in e_{1,i}R$). So suppose $e_{i,xR}$ is projective for all $x \in e_iR$. We have the exact sequence of R-modules.
Extremal orders inside simple artinian rings

$0 \rightarrow e_0xR \cap (1-e_0)xR \rightarrow e_0xR \rightarrow e_0xR \rightarrow 0$, where $1 = e_{1,1} + e_{2,2} + \ldots + e_{n,n}$. Now $e_{i,1}e_0xR = e_{i,1}xR$ and $e_0xR \cap (1-e_{i,1})xR \subseteq e_0xR \cap (1-e_{i,1})xR$ (because $1-e_{i,1} = e_{i,1} + \ldots + e_{n,n}$). Since $e_{i,1}xR$ is projective by the induction of the sequence splits. So $e_0xR \cong e_{i,1}xR \oplus (e_0xR \cap (1-e_{i,1})xR)$.

Thus $e_{i,1}xR \oplus (e_0xR \cap (1-e_{i,1})xR)$ is a cyclic right R-module and is a submodule of $e_{i,1}xR$. Hence it is projective by assumption. Therefore we obtain e_0xR as a sum of two projective modules, thus it is projective. Thus by induction, exR is projective for all i. Setting $i = n$, then $e_nxR = xR$ is a projective.

We now show that xR is projective for all $x \in e_{i,j}M_n(D)$. Recall that xR is projective if and only if the annihilator $\text{ann}_R(x) = eR$ for some idempotent $e \in R$. This holds for $x \in Q$, not just for $x \in R$ as $RF = Q$ and $\text{ann}_R(x) = \text{ann}_R(x\alpha)$ for any $\alpha \in F^*$.

Say $x = \sum_{j=1}^{n} x_{ij}e_{i,j} \in e_{i,j}M_n(D)$ with $x_{ij} \in D$. If $x = 0$ then $\text{ann}_R(x) = R$ and we are done.

Also, by Lemma 2.5 of [7] there is an i_0 with $x_{i_0,j} \in B_{i_0,j}$ for all j, and so $x_{i_0,j}^{-1}x_j \in B_{i_0,j}$ for all j. Let e be the permutation matrix which switches the i_0th and ith rows. Let

$$e = I_n - x_{i_0,j}^{-1}(Ex) = \begin{pmatrix} 1, & 0, & 0, \ldots, & 0 & 0 \\ 0, & 1, & 0, \ldots, & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ -x_{i_0,j}^{-1}, & \ldots, & -x_{i_0,j}^{-1}, & 0, & -x_{i_0,j}^{-1}x_{i_0,j}, \ldots, -x_{i_0,j}^{-1}x_{i_0,j} \\ 0, & 0, & 1, & 0, \ldots, & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 0, & 0, & 0, \ldots, & 0 & 1 \end{pmatrix}.$$

We have $e \in R$ since $x_{i_0,j}^{-1} \in B_{i_0,j}$. Also $xe = xI_n - xx_{i_0,j}^{-1}(Ex) = x - x = 0$ $xe = xI_n - xx_{i_0,j}^{-1}(Ex) = x - x = 0$, and so $e \in \text{ann}_R(x)$.

Let $a \in \text{ann}_R(x)$, then $ea = (I_n - xx_{i_0,j}^{-1}(Ex))a = -a - 0 = a$. Thus $e^2 = e$, and $\text{ann}_R(x) = eR$ is generated by an idempotent. Therefore xR is projective.

Theorem 3.7 (J.S. KAUTA) R is a semihereditary V-order if and only if R is conjugate to an order of type ΦH. Therefore orders of type ΦH are extremal. (See Theorem 4.7 [7] and 39.14 (ii) [10] for special cases of this theorem.)

Proof: Suppose R is a semihereditary V-order. Then R contains a full set of primitive orthogonal idempotents. After a conjugation, if necessary, we may assume all the standard idempotents $e_{1,1}, e_{2,2}, \ldots, e_{n,n} \in R$. Since R is integral over V, $e_{ij}R_{e_{ij}}$ is integral over V. Also $e_{ij}R_{e_{ij}}F = e_{ij}RF_{e_{ij}} = e_{ij}De_{ij} = D$, therefore $e_{ij}R_{e_{ij}}$ is a V-order; indeed, $e_{ij}R_{e_{ij}}$ is a semihereditary V-order in D. Hence $e_{ij}R_{e_{ij}} = B$ (because B is an invariant valuation ring extending V; therefore B is the unique extremal and hence the unique semihereditary V-order in D). Set $B_{ij} = e_{ij}R_{e_{ij}}$. Then $B_{ij} \neq 0$, since R is an order in Q. Since $B \subseteq R$, we have $Be_{ij}R_{e_{ij}} = e_{ij}B_{e_{ij}} = e_{ij}e_{ij}R_{e_{ij}} = e_{ij}R_{e_{ij}}B$, therefore $BB_{ij} = B_{ij}B = B_{ij}$ and so B_{ij} is a B-bisubmodule of D. Now R is a ring and $Re_{ij}e_{ij}R_{e_{ij}} \subseteq R$; so $B_{k,l}B_{ij} \subseteq B_{k,l}$, where $B_{k,l} = e_{ij}R_{e_{ij}}$ and $B_{ij} = e_{ij}R_{e_{ij}}$ holds. We only have to show Morandi's condition holds.
Suppose \(\exists i_0, j_0 \) and an \(0 \neq \alpha \in D \) such that \(\alpha \notin B_{i_0, j_0} \) and \(\alpha^{-1} \notin B_{j_0, i_0} \). Since \(B \) is an invariant valuation ring, \(t_0 \neq j_0 \). Let \(\Gamma = (e_{i_0, j_0} + e_{j_0, i_0})R(e_{i_0, j_0} + e_{j_0, i_0}) \cong \begin{bmatrix} B & B_{j_0, i_0} \\ B_{i_0, j_0} & B \end{bmatrix} \). Then \(\Gamma \) is a semihereditary order in \(M_2(D) \) by [15]. Consider \(x = \begin{bmatrix} \alpha & 1 \\ 0 & 0 \end{bmatrix} \in M_2(D) \).

Then \(\text{ann}_R(x) = \begin{bmatrix} t & r \\ -\alpha t & -\alpha r \end{bmatrix} \) such that \(t, \alpha r \in B, r \in B_{j_0, i_0}, \alpha t \in B_{i_0, j_0} \) (see the proof of Theorem 1.5 [11]). We have \(\alpha t \notin B_{i_0, j_0} \) and \(t \in B \). But \(\alpha \notin B_{i_0, j_0} \). Hence \(\alpha^{-1} \notin B_{j_0, i_0} \), a contradiction, and so we have Morandi’s condition.

But \(a \in J(B) \), so \(b \alpha \) is a unit in \(B \). Hence \(ab \) is also a unit in \(B \). But \(b \in B_{j_0, i_0} \supseteq abB = B \) since \(ab \) is a unit in \(B \), hence \(\alpha^{-1} \notin B_{j_0, i_0} \), a contradiction, and so we have Morandi’s condition.

On the other hand, let \(R = (B_{i,j}) \) be of type \(\Phi \). We want to show that \(R \) is a semihereditary \(V \)-order in \(Q = M_2(D) \). By Lemma 2.5, \(R \) is a ring with the identity element of \(Q \), and \(FR = Q \). By the proof of ([7], Proposition 4.3), \(R \) is a \(V \)-order. But \(MR(R) \) is of type \(\Phi \) whenever \(R \) is. Hence Lemma 2.6 shows that for each \(r \), every principal right ideal of \(MR(R) \) is projective. So \(R \) is right semihereditary by [12]. Similarly, \(R \) is left semihereditary and hence it is semihereditary.

Proposition 3.8. Every Bezout \(V \)-order is a semihereditary \(V \)-order, but the converse does not hold.

Proof: Suppose

\[
R = \begin{bmatrix}
B & J(B_{1,2}) & \cdots & \cdots & J(B_{1,n}) \\
\cap & \cap & \cdots & \cdots & \cap \\
B_{2,1} & J(B_{2,2}) & \cdots & \cdots & J(B_{2,n}) \\
\cap & \cap & \cdots & \cdots & \cap \\
\vdots & \vdots & \cdots & \cdots & \vdots \\
B_{n,1} & B_{n,2} & \cdots & \cdots & \vdash B
\end{bmatrix},
\]

where \(B_{i,j} \) is an overring \(B \) for all \(i,j \) and \(B_{i,j} \neq B \) for some \(i,j \). By Theorem 2.7 and Theorem 2.6 of [11] \(R \) is semihereditary maximal \(V \)-order. But \(B_{n,1} \supseteq B \) by assumption. Let \(W = B_{n,1} \cap F \), then \(RW \subset M_n(B_{n,1}) \), since \(WB \subset WB_{n,1} = B_{n,1} \). If \(R \) is a Bezout, then \(R \cong M_n(B) \) by Corollary 3.5 of [7]. But \(RW \) would be a Dubrovin valuation ring over \(W \) and \(RW \subset M_n(B_{n,1}) \). Therefore \(RW = M_n(B_{n,1}) \), a contradiction.

If \(R \) is a Bezout \(V \)-order, by Proposition 1.8 and Example 1.15 of [16], then \(R \) is semihereditary and also more examples of semihereditary orders can be found in [17].

Therefore we have the following diagram in general.

\[
\text{Integral Dubrovin valuation rings} \Rightarrow \text{Bezout } V\text{-orders} \Rightarrow \text{Maximal } V\text{-orders}
\]

\[
\text{(if } V \text{ is Henselian) type } \Phi \text{ } H \Leftrightarrow \text{semihereditary } V\text{-orders} \Rightarrow \text{Extremal } V\text{-orders}.
\]
4. SEMIHEREDITARY ORDERS INSIDE BEZOUT ORDERS

Let \(V \) be a discrete valuation ring of \(F \) and \(Q \) a central simple \(F \)-algebra. By Wedderburn structure theorem \(Q \cong M_n(D) \), where \(D \) is a division algebra with center \(F \).

By (10-4) Corollary of [10] every \(V \)-order in \(Q \) is contained in a maximal \(V \)-order in \(Q \). If \(V \) be complete valuation ring, then the integral closure \(V \) in \(D \), i.e., \(\Delta = \text{int}_D(V) \) is the unique maximal \(V \)-order in \(D \). Let \(R \) be an \(V \)-order in \(Q \). Then by Theorem (39-14) of [10], \(R \) is a hereditary order if \(R \) is an Extremal \(V \)-order.

In this case \(R \) is precisely,

\[
R = \begin{bmatrix}
(\Delta)(P),(P),\ldots,(P) \\
(\Delta)(\Delta)(P),\ldots,(P) \\
\vdots \\
(\Delta)(\Delta),\ldots,(\Delta)
\end{bmatrix}^{(n_1,n_2,\ldots,n_r)}
\]

where \(P = J(\Delta) \) and \(n_1+n_2+\ldots+n_r=n \).

Now we assume \(V \) is a Henselian valuation ring of \(F \), not necessarily discrete. Let \(R \) be an Extremal \(V \)-order inside an integral Dubrovin valuation ring of \(B \) with \(B \cap F = V \). We know the integral closure \(V \) in \(D \) i.e., \(\Delta = \text{int}_D(V) \) is a unique maximal \(V \)-order in \(D \), and so \(B \cong M_n(\Delta) \) is a Dubrovin valuation ring and we can consider \(R \subseteq M_n(\Delta) \). By (Proposition [1]) \(R \) is semihereditary. So in this case we have

\[
R = \begin{bmatrix}
(\Delta),(J(\Delta)),\ldots,(J(\Delta)) \\
(\Delta),(\Delta),(J(\Delta)),\ldots,(J(\Delta)) \\
\vdots \\
(\Delta),(\Delta),\ldots,(\Delta)
\end{bmatrix}^{(n_1,n_2,\ldots,n_r)}
\]

where \(n_1+n_2+\ldots+n_r=n \) and \(R=\text{B if J(R)=J(\Delta)R if J^{-1}(\Delta)=\Delta} \).

If \(V \) isn't Henselian, then \(B_h = B \otimes_v V_h \) is a Dubrovin valuation ring. Therefore \(B/\text{J}(B) \cong B_h/\text{J}(B_h) \)

\(J(B) \otimes_v V_h \subseteq R \otimes_v V_h = R_h \). Hence we have \(\bigcup R_h = R \) and \(R_h \) is semihereditary if \(J(R) = J(\Delta)R \) if \(J^{-1}(\Delta) = \Delta \).

Corollary 4.1. Let \(R \) be an extremal \(V \)-order inside a Dubrovin valuation ring of \(B \), and if \(R \subseteq R' \subseteq B \), then \(R' \) is extremal \(V \)-order in \(B \).

Proof: Since \(R \) is semihereditary, \(R' \) is a semihereditary \(V \)-order (by Lemma 4.10 of [7]), and so \(R' \) is an extremal \(V \)-order.
Corollary 4.2. Let R be an extremal V-order inside an integral Dubrovin valuation ring with $J(B)$ a non-principal ideal of B. Then $R=B$ if $J(R)=J(V)R$.

Now the generalization of Proposition 2.1 of [1] is given.

Theorem 4.3. Let R be an Extremal V-order sitting inside a Bezout V-order B. Then R is a semihereditary V-order.

Proof: By induction on $[Q:F]$. If $[Q:F]=1$, then B is an integral Dubrovin valuation ring and so R is a semihereditary.

Now we assume B is not a Dubrovin valuation ring. Then there exists an integral Dubrovin valuation ring T of Q, with center W such that

$$i)\ T
\supset
B\ ii)\ J(T)
\subseteq
J(B)
\subseteq
J(R)\ iii)\ \tilde{R}
=\ R/J(T),\ \tilde{B}
=\ B/J(T)$$

are $V/J(W)$-orders in $\overline{T}=T/J(T)$, and $(iv)[\overline{T}:Z(\overline{T})]<[Q:F]$. By induction, \tilde{R} is semihereditary and so R is semihereditary (by Lemma 4.11 of [7]).

5. THE HENSELIZATION

We now consider V to be a valuation ring of a field F of arbitrary rank which need not be Henselian. One aim of this section is to examine the effect of Henselization on Bezout and maximal semihereditary V-orders.

Let (V,F) be the Henselization of (V,F) (see [9] for definition).

Let Q be a central simple F-algebra, then $Q\otimes_F F_h$ is a central simple F_h-algebra and by ([10] Corollary 7.8) and also by Wedderburn's Theorem $Q\otimes_F F_h\cong M_n(D)$ for some n, where D is a division algebra finite dimension over F_h.

Let R be a V-order in Q. Clearly if $R\otimes_V V_h$ is a maximal V_h-order, then R is a maximal V-order. Thus the difficulty lies in proving the converse.

If V be a discrete valuation ring, then a V-order R of Q is a maximal order if R is a Dubrovin valuation ring ([6]: Example 1.15). Therefore, in this case $R\otimes_V V_h$ is a Dubrovin valuation ring of $Q\otimes_F F_h$, which is integral over V_h. Thus $R\otimes_V V_h$ is a maximal V_h-order.

On the other hand, there exists a Bezout maximal V-order R such that $R\otimes_V V_h$ is a semihereditary maximal order, but is not Bezout, (see [7] Example 4.14).

(1) Suppose R is a maximal V-order in a central simple F-algebra Q. Let (F_h,V_h) be the Henselization of (V,F). Then $R\otimes_V V_h$ is a V_h-order in $Q\otimes_F F_h$. Is $R\otimes_V V_h$ a maximal order?

(2) If R is semihereditary, then $R\otimes_V V_h$ is a V_h-order in $Q\otimes_F F_h$. Is $R\otimes_V V_h$ semihereditary?

Now we assume that B is an invariant valuation ring extension of V_h to D and $R\cong (B_{i,j})$, an order of type ΦH in $Q\otimes_F F_h$.

Theorem 5.1. Suppose Q is a central simple F-algebra and V is a valuation ring in F. If T is a Bezout V-order in Q, then $T\otimes_V V_h$ is conjugate to an order type ΦH such that $B_{i,j}^{-1}=B_{j,i}$ for all i,j and $J(T)\otimes_V V_h=J(B)(T\otimes_V V_h)$.

Moreover, $T\otimes_V V_h$ is a Dubrovin valuation ring if T is a Dubrovin valuation ring. In this case $T\otimes_V V_h$ is conjugate to $M_n(B)$.
Extremal orders inside simple artinian rings

Proof: By Theorem 17 of [18], \(T \otimes \nu V_h \) is a semihereditary maximal \(V_h \)-order in \(Q \otimes \nu F_h \). Therefore \(T \otimes \nu V_h \) is conjugate to an order type \(\Phi H \). And by Theorem 2.7 of [11] \(B_{i,j}^{-1} = B_{j,i} \) for all \(i,j \) and \(J(T) \otimes \nu V_h = J(B)(T \otimes \nu V_h) \). Also, \(T \otimes \nu V_h \) is Bezout if \(T \) is Dubrovin valuation ring (see Theorem 17 in [18]). Since \(V_h \) is Henselian, \(T \otimes \nu V_h \) is a Dubrovin valuation ring, and so \(T \otimes \nu V_h \) is conjugate to \(M_n(B) \).

J. S. Kauta ([11]: Theorem 3.4) proved that a \(V \)-order \(R \) is semihereditary if its Henselization \(R \otimes \nu V_h \) is semihereditary. So the answer (2) is yes.

Theorem 5. 2. If \(R \) is a maximal \(V \)-order in a central simple \(F \)-algebra \(Q \), then \(R \otimes \nu V_h \) is a maximal \(V_h \)-order in \(Q \otimes \nu F_h \) if one of the following conditions holds.

(1) \(R \) is a Bezout ring.
(2) \(R \) is a semihereditary ring.
(3) \(R \) is a finitely generated \(V \)-module.
(4) \(\text{Rank} V = 1 \)

Proof: If \(R \) is a Bezout ring, then by Theorem 17 of [18] \(R \otimes \nu V_h \) is a maximal \(V_h \)-order. And if \(R \) is a semihereditary ring, it follows from Theorem 1 of [19].

Now we suppose that \(R \) is a finitely generated \(V \)-module. Then \(R \) is contained in a Bezout \(V \)-order \(T \) by ([7], Prop.3). Since \([T/J(T):V/J(V)] < \infty \), there exists \(t_1, \ldots, t_n \in T \) such that \(T = t_1V + \ldots + t_nV + J(T) \). But by ([11]: Prop. 1.4) \(J(T) \subseteq R \) (since maximal orders are extremal). Hence \(T \) is a finitely generated Bezout \(V \)-order. By the maximality of \(R \), we have \(T = R \). Therefore \(R \) is a Bezout \(V \)-order.

(4) Let \((V_h, F_h)\) be the Henselization of \((V, F)\). Then \((V, F) \subseteq (V_h, F_h) \subseteq (V, F)\), where \((V, F)\) is the complement of \((V, F)\) with respect to the metric induced by the valuation corresponding of \(V \). Hence \(V \) is dense in \(V_h \) and by (Proposition of [19]) we have \(R \otimes \nu V_h \) as a maximal \(V_h \)-order in \(Q \otimes \nu F_h \).

Let \(B \) be a unique extension valuation ring \(V_h \) to \(D \), where \(Q \otimes \nu F_h \cong M_n(D) \) and \(R = (B_{i,j}) \) is order type \(\Phi H \). Then we have the following theorem.

Theorem 5. 3. Suppose \(Q \) is a central simple \(F \)-algebra and \(V \) is a valuation ring in \(F \). If \(T \) is a maximal semihereditary \(V \)-order in \(Q \), then \(T \otimes \nu V_h \) is conjugate to an order type \(\Phi H \) such that \(B_{i,j}^{-1} = B_{j,i} \) for all \(i,j \).

Proof: By Theorem 5.2, (2) \(T \otimes \nu V_h \) is a semihereditary maximal \(V_h \)-order, and by Theorem 3.7 \(T \otimes \nu V_h \) is conjugate to an order type \(R = (B_{i,j}) \). On the other hand, \(R \) is a semihereditary maximal order, and by Theorem 2.6 of [11] we have \(B_{i,j} = B_{j,i}^{-1} \) for all \(i,j \).

REFERENCES

