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Abstract – We consider the semilinear elliptic boundary value problem 
 





Ω∂∈=
Ω∈=∆−

xxu
xxufxu

;0)(
));(()( λ

 

 

where 0>λ  is a parameter, Ω  is a bounded region in NR  with a smooth boundary, and f  is a 

smooth function. We prove, under some additional conditions, the existence of a positive solution for λ  

large. We prove that our solution u  for λ  large is such that ∞→=
Ω∈

|)(|||:|| sup xuu
x

 as ∞→λ . 

Also, in the case of 1=N , we use a bifurcation theory to show that the solution is unstable. 
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1. INTRODUCTION 
 

Here we consider the semilinear elliptic boundary value problem 
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                                      (1) & (2) 

 
where 0>λ  is a constant, Ω  is a bounded region in NR  with a smooth boundary and f  is a 
smooth function. 

First we state the following Theorems, then we establish these Theorems in Section 2. 
 
Theorem 1. 1. If 0)0( <f , 0/)(lim =∞→ ttft , and f  is a smooth function such that )(tf ′  is 
bounded below, then, there exists 00 >λ  such that for oλλ <<0 , problem (1) and (2) have a 
solution u  where 0≤u  in Ω . 
 
Remark 1. 1. We assume that there exists 0>c , 0>M  such that 
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                                                              0,)( ≥∀≥ xMxf                                                         (3) 
 

and prove that for problem (1) and (2) there is a non-negative solution for largeλ . This result has 
been established in [1], but our method further established that our solution u  is such that 

+∞→|||| u  as +∞→λ . Here we use a recent result by Clement and Sweers [2] to create an 
appropriate sub-solution. 

 
Theorem 1. 2. Assume the hypotheses of Theorem 1.1, and furthermore assume that f satisfies (3). 
Then there exists a *λ such that for *λλ >  the problem (1), (2) has a non-negative solution u  such 
that +∞→|||| u  as +∞→λ . 
 
Theorem 1. 3. Let 0)0( =f , 0)0( <′f , 0/)(lim =∞→ ttft and f  is eventually increasing.  

Also, assume that there exists 0>β  such that 0)( <tf  for ),0( β∈t  and 0)( >tf  for 
β>t . Then, there exists λ  such that for λλ ≥ , the problem (1), (2) has at least two positive 

solutions. 
 

Theorem 1. 4. Let f  satisfy the same hypotheses as in Theorem 1.3. Then there exist *λ  such that 
for *λλ < , the problem (1), (2) has no positive solutions.  
 
Remark 1. 2. Theorem 1.3 is established by using sub-super solutions arguments and results from the 
so-called semipositone problems. Theorem 1.4 follows easily from the fact that f  is negative near 
zero and is sublinear at infinity. 

 
Remark 1. 3. We note here that if u  is a non-negative ( 0≥u  for Ω∈x ), non-trivial solution then 
u is necessarily positive ( 0>u  for Ω∈x ). This follows from the fact that there exists 0)( >λc  
such that 0,0)()( ≥∀≥+ uucuf λλ  and so 0≥u  satisfies Ω∈∀≥+∆− xucu ,0)(λ  and hence 

0>u  by the maximum principle [3]. 
 

Remark 1. 4. Here we deal with sublinear nonlinearities satisfying 0)0( =f  and 0)0( <′f . For an 
existence result via the variational method for the superlinear nonlinearities satisfying 

0)0(,0)0( <′= ff  and f  being superlinear at infinity [4], and for an instability result for convex 
nonlinearities see [5]. 
 
Remark 1. 5. We note that for classes of nonlinearities of f , that 0)0(,0)0( <′= ff , and there 
exist 012 >> ββ  such that 0)( <tf  for ),(),0( 21 +∞∪∈ ββt  and 0)( >tf  for ),( 21 ββ∈t . 
Theorems 1.3 and 1.4 can be easily established by using the ideas given in this paper. 

Now we consider the boundary value problem 
 

                                                      )1,1(;0))(()( −∈=+′′ xxufxu λ                                                 (4) 

 
                                                                     ).1(0)1( uu ==−                                                             (5) 

 
Where λ  is a positive parameter (the case of 1=N ). 
For any solution )(xu  of (4), (5) let ))(,( xwµ  denote the principal eigenpair of the 

corresponding linearized equation, i.e. 0)( >xw  satisfies 
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                                   )1(0)1(),1,1(;0)( wwxwwufw ==−−∈=+′+′′ µλ                                (6) 

 
Recall that solution )(xu  of (4) and (5) is called unstable if 0<µ , otherwise it is stable. Recall 

also that a solution of (4) and (5) is called degenerate (or singular) if for 0=µ  there is a non-trivial 
solution of (6). It is easy to see that for a positive degenerate solution any solution w  of (6) is of one 
sign, i.e. 0=µ  can only be the principal eigenvalue. In fact, if u is a positive degenerate solution, 
then u  is an even function, 0<′u  in )1,0(  and u′  satisfies 0)()( =′′+′′′ uufu λ . Then by Sturm 
comparison Lemma, w  must be of one sign. It follows that unstable solutions are non-degenerate. 

 

Let ).()(2)(,)()(
0

uufuFuhdttfuF
u

−== ∫
  

We establish the following results in section 3. 
 
Theorem 1. 5. Assume that 0)0(),,0[1 >∞∈ fCf , and for some 0>> βα  we have 

 

                                            
,;0)(,0;0)( αββ <<≤′<<≥′ uuhuuh                                     (7) 

 
                                                                            .0)( ≤αh                                                                   (8) 

 
Then the solution of (4) and (5) with α=)0(u is unstable if it exists. 

 
Remark 1. 6. Theorem 1.5 is stated in a way that we assume the existence of a solution with 

α=)0(u . In fact, if 0)( >uf for all ],0[ α∈u , then for any ],0( α∈d , there exists a unique 
)(dλ  such that (4) and (5) have a positive solution with )(dλλ =  and du =)0( , see [6]. 

 
Remark 1. 7. It is easy to see that condition (7) holds if 
 

                                                                 α<<>′′ uuf 0;0)(                                                         (9) 

 
and (8) is also satisfied. So Theorem 1.5 still is true if we replace (7) with (9). 
 
Remark 1. 8. It is well- known that if for some 0>β , 0)( >uf  and 0)( ≥′ uh  or β≤≤ u0 , then 
the solutions of (4) and (5) with du =)0(  and β≤< d0  are all stable ([7], Theorem 6.2). Thus 
Theorem 1.5 implies that if f is convex and positive, and satisfies (8), then the unique degenerate 
solution u  satisfies αβ << )0(u . 
  
Remark 1. 9. Note that any solution of (4) and (5) is symmetric with respect to any point )1,1(0 −∈x  
such that 0)( 0 =′ xu , so any positive solution of (4) and (5) is a reflection extension of a monotone 
decreasing solution of 
 
                                                         )1,0(;0)( ∈=+′′ xufu λ                                                   (10) 

 
                                                                   ;0)1()0( ==′ uu                                                              (11) 
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                                                              ).1,0(;0)( ∈<′ xxu                                                    (12) 
 

So the study of all positive solutions is reduced to the study of (10)-(12). On the other hand, all 
solutions of (10)-(12) can be parameterized by their initial values ρ=)0(u . 

In fact, by integrating the equation we obtain 
 

                                          ),1,0(;))](()([2)( ∈−−=′ xxuFFxu ρλ                                (13) 
 

 where ρ=)0(u , and 
 

                                                     
∫ =

−
=

ρ

ρ
ρ

λ
0

).(:
)()(2

1 G
uFf

du
                                         (14) 

 
So for each 0>ρ , there is at most one (if the integral in (14) is well defined and convergent) 

λ such that (10)-(12) have a solution. Thus the solution set of (10)-(12) can be represented by 
2)]([)( ρρλλ G== , which we call bifurcation diagram. 

 
Remark 1.10. In view of Remark 1.9 and equation (6), at a degenerate solution, we have w  as a 
nontrivial solution of the linearized equation [8, 9] 
 

                                           ).1(0)0(),1,0(;0)( wwxwufw ==′∈=′+′′ λ                                  (15) 

 
Lemma 1.1. Suppose that ))(.,),(( ρρλ u  is a degenerate solution of (10)-(12), and w  is the 
corresponding solution of linearized equation (15). Then 0)( ≠xw  for )1,0[∈x , so we can choose 
w  as positive in )1,0[ . 

 
Lemma 1.2. Assume that 0)(,0)0(),,0[2 <<+∞∈ uffCf  for ),0( bu∈  for some 

0)(,0 => bfb  and 0)( >′ bf , and there exists b>θ such that 0)(,0)( <> uFf θ  for 
),0( θ∈u , and 

 
                                                                           0)( =θF .                                                                (16) 
 

Then )(.,θu  is an unstable solution. 
 
Lemma 1. 3. ([10], [11]) we have 
 

∫
′′

=
1

0 )(2
)1()1()()),((

ρλ
ρ wudxxwxuf . 

 
Although it is possible that 0)1( =′u for a solution (.)u  of (10)-(12), (in fact, 0),1( =ρxu  if 

and only if )θρ = , we can show that 0)1( <′u  if (.)u  is a degenerate solution. 
 

2. PROOFS OF THEOREMS 1. 1-1. 4 
 
Proof of Theorem 1. 1. Suppose u is a solution of (1) and (2) such that it is positive somewhere in 
Ω . Then there exists Ω⊂Ω*  such that 0>u  in *Ω , 0=u  on *Ω∂ . Let )( *

1 Ωλ be the smallest 
eigenvalue of 
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*
1 ; Ω∈=∆− xφλφ   

*;0 Ω∂∈= xφ  
 

and 0>φ  in *Ω , a corresponding eigenfunction. Now by assumptions in Theorem1. 1, there exists a 
0>β  such that 

 
.0;)( ≥∀≤ tttf β  

 
Now u satisfies 

 
.};)({ *Ω∈−=−∆− xuufuu βλλβ   

Hence multiplying by φ and integrating over *Ω we have, 
 

∫ ∫
Ω Ω

≤−Ω=−∆−
* *

.0))(()( *
1 dxudxuu φλβλφλβ

  
This is impossible if ./)( *

1 βλλ Ω<  But we know that )()( *
111 Ω≤Ω= λλλ  if Ω⊂Ω* . 

Hence the result holds for βλλ /)(10 Ω= .  
 
Proof of Theorem 1. 2. Consider the boundary value problem 
 

                                                       Ω∈=∆− xxwgxw ));(()( λ                                              (17) 
 

                                                                 Ω∂∈= xxw ;0)(                                                      (18) 
 

where 
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Here 1>α  and cαδ > . 

Note that )),0([1 ∞∈Cg , 
4

)
2

)1((max Mcgg =
+

=
α

 and 
 

.1
)1(

)( +→+∞→
−

=′ α
α

as
c

Mcg  

 
Thus by (3) there exists 0αα =  such that 

 

                                                            .);()( 0α≥∀≥ ssgsf                                                   (19) 
 

Now, for 0αα =  there exists a 0δ  such that  
 

∫ >
s

dssg
0

0)(
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for every 0δδ ≥ . Let ),,( 0 δαsg  with 0δδ ≥ . Then by the result of Clement and Sweers ([2, 
Theorem 2]), problem (17) and (18) have a non-negative solution δ<≤ w0  for λ  large, say for 

)(δλλ ≥ , such that δ→|||| w  as +∞→λ . But by (19) this solution is a sub-solution of (1), (2). 
Now let )(xv  to be the unique positive solution of 

 
Ω∈=∆− xxv ;1)(   
Ω∂∈= xxv ;0)(   

and consider )()( xJvx =φ ; 0>J  (to be chosen). Then φ  satisfies 
 

Ω∈=∆− xJx ;)(φ   
.;0)( Ω∂∈= xxφ  

 
But by 0/)(lim =+∞→ ttft , there exists a 00 >J  such that for 0JJ > , 
 

Ω∈≥=∆− xxJvfJx ));(()( λφ   
and thus )(xφ  will be a super-solution for (1) and (2). Consequently, given )(δλλ ≥ , there exists 

)(0 λJ  such that )(0 λJJ >   
)()( xJvx =φ  

 
will be a super-solution of (1), (2) satisfying 
 

.)( wx ≥φ   
Hence there exists a solution u for )(δλλ ≥  such that )(xuw φ≤≤ . But δ→|||| w  as 
+∞→λ  and δ can be chosen arbitrarily large. Hence Theorem 1.2 is proven.  

 
Remark 2. 1. We first recall the following sub-super solutions result which will be used to establish 
Theorem 1.3. 
 
Theorem 2. 1. Suppose there exists a sub-solution 1ϕ , a strict super-solution 1φ , a strict sub-solution 

2ϕ and a super-solution 2φ  for the problem (1), (2) such that 211 φφϕ << , 221 φϕϕ <<  and 2ϕ  is 
not less than or equal to 1φ  [12].   

Then the problem (1), (2) has at least three distinct solutions su  (s=1, 2, 3) such that  
 

23211 ϕϕ ≤<<≤ uuu . 
 

Note that a weaker form of Theorem 2.1 (under the assumption 21 ϕφ ≤ ) was established in [13]. 
However, we require this stronger version to establish our multiplicity result. 
 
Proof of Theorem 1. 3. Clearly 01 ≡ϕ  is a solution to (1), (2). Consider )()(1 xvx εφ =  where 

0)( >xv ; Ω∈x is an eigenfunction satisfying 
 

                                                       Ω∈=∆− xxvxv );()( 1λ                                                    (20) 
 

                                                         Ω∂∈= xxv ;0)(                                                   (21) 
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corresponding to the principal eigenvalue 01 >λ . Now 0)()( 1 >−= zfzzH λλ  for small positive 
z  since 0)0( <′f . Thus ))(()(11 xvfxv ελελφ >=∆−  for Ω∈x  if 0>ε  is small, and hence 

1φ is a strict super-solution of (1) and (2).  
Next consider a 1C  function g  as in Theorem 1.2 such that )()( ufug <  for all 0≥u . This is 

clearly possible by the hypotheses on f . Let ),(22 λϕϕ x=  be a positive solution for large 
λ described in Theorem 1.2 of )(wgw λ=∆−  in Ω , 0=w  on  ∂ Ω . Then 

)()( 222 ϕλϕλϕ fg <=∆−  for Ω∈x , and hence 2ϕ is a strict sub-solution of (1), (2) for large λ . 
Finally, consider )()(2 xMZx =φ  where )(xZ is the unique positive solution of 1=∆− w  in 

Ω , 0≡w  on ,Ω∂  and 0>M is a constant. 

Then ))(()(2 xMZfMx λφ ≥=∆−  for Ω∈x , provided that )(1 λMM ≥  for some )(1 λM  

large enough so that )||||( ∞≥ ZMfM λ , which is possible since 0)(lim =∞→ u
uf

u  and f is 

eventually increasing. Now also choose )(2 λMM ≥  where )(2 λM  is large enough so that 

),()( 2 λϕ xxMZ > and )()( 1 xxMZ φ>  for Ω∈x , which is possible since 0)( >xZ  for Ω∈x and 

0<
∂
∂

n
Z

 for Ω∂∈x where n denotes the outward normal. Choose )}(),(max{ 21 λλ MMM ≥ . 

Further, choose 0>ε small enough so that the set }0)()(:{ 12 >−Ω∈= xxxS φϕ  is non-empty. 
Now applying Theorem 2.1, the existence of at least two distinct positive solutions for λ  large 

easily follows. In particular, a positive solution 1u  such that )()()( 212 xxux φϕ ≤≤  for Ω∈x , and 
a second positive solution 2u  such that )()(0 22 xxu φ≤<  for Ω∈x , 

φφ ≠>−Ω∈= }0)()(:{ 121 xxuxS  and φϕ ≠<−Ω∈= }0)()(:{ 222 xxuxS  exist.  
 
Proof of Theorem 1. 4. Let u be a positive solution of (1), (2). Multiplying (19) by u  and (1) by v , 
where )(xv is as defined in problem (19) and (20), and subtracting we obtain 
 

                                                            
∫
Ω

=− .0))(( 1 vdxuuf λλ                                                         (22) 

 

Here we have used the fact that ∫
Ω

=∆−−∆− 0])()[( dxuvvu , which easily follows by applying 

Green’s identity and boundary conditions. But since 0)0( =f , 
u
uf

u
)(lim 0→  exists and 

0)(lim =∞→ u
uf

u , there exists 0>K  such that Kuuf ≤)(  for all 0≥u . Thus, if λ is small 

enough so that K>
λ
λ1 , equation (22) cannot hold. Hence, for λ small, the problem (1) and (2) has 

no positive solution and Theorem 1.4 is proven.  
 

3. PROOFS OF THEOREM 1. 5 AND LEMMAS 1.1 AND 1. 2 
 
Proof of Theorem 1. 5. 
We have 0)0( =h , )()()0( ufuufh ′−=′ , 0)0()0( >=′ fh . It follows that )(uh  is unimodular 
on ],0[ α , and it takes its positive maximum at β=u . Define )1,0(0 ∈x  by β=)( 0xu . We then 
conclude 
 

                                         



≥′−
≤′−

).1,(0))(()())((
),,0(0))(()())((

0

0

xonxufxuxuf
xonxufxuxuf

                               (23) 
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We also remark that by condition (8), 
 

                                    
∫ ∫ ≥−==′′−
1

0

1

0

.0)())(()()]()([ αhdxxuh
dx
ddxxuufuuf                          (24) 

 
Assume now that )(xu is stable, i.e., 0≥µ in (6). Without loss of generality, we assume that 
0>w  in )1,1(− . By the maximum principle, 0)1( <′u , so near 1=x  we have )()( xwxu >′− . 

Since 0)0( =′− u , while 0)0( >w , the functions )(xw  and )(xu′−  change their order at least once 
on )1,0( . We claim that the functions )(xw and )(xu′−  change their order exactly once on )1,0( . 
Observe that )(xu′−  satisfies 
 
                                                               0))(()( =′−′+′′′− uufu λ                                                    (25) 

 
on )1,0( . Let )1,0(3 ∈x  be the largest point where )(xw  and )(xu′−  change the order. Assuming 
the claim to be false, let 2x , with 320 xx << , be the next point where the order changes. We have 

uw ′−>  on ),( 32 xx , and the opposite inequality to the left of 2x . Since )0()0( uw ′−> , there is 
another point 21 xx < , where the order  is changed. We multiply (6) by u′− , multiply (25) by w , 
subtract and integrate from 1x  to 2x , then we obtain 
 

                      
∫ =′−+′′+′−′′+′

2

1

,0)())(()]()()[()]()()[( 111222

x

x

dxxwxuxuxwxwxuxwxw µ        (26) 

 
since )()( ii xuxw ′−=  for 2,1=i . Let ))(()()( xuxwxt ′−−= . Then 0)( ≤xt  for ),( 21 xxx∈  and 

0)( ≥xt  for ),( 32 xxx∈ . Thus 0)()()( 111 ≤′′+′= xuxwxt and 0)()()( 222 ≥′′+′= xuxwxt . 
Because 0)( >xw  and 0)( >′− xu  on )1,0( , we get a contradiction in (26). 

Since the point of changing of order is unique, by scalling )(xw  we can achieve 
 

                                                     



≥′−
≤′−

).1,()()(
),,0()()(

0

0

xonxwxu
xonxwxu

                                         (27) 

 
Using (23), (27), and also (24), we have 

 

                                 
∫ ∫ ≤′−′−<′−
1

0

1

0

.0))()](()([)()]()([ dxxuufuufdxxwufuuf                       (28) 

 
On the other hand, multiplying equation (6) by u , Eqs. (4) and (5) by w , subtracting and 

integrating over )1,0( , we have 
 

∫ ∫ ≥=′−
1

0

1

0

,0)()]()([ uwdxdxxwufuuf
λ
µ

  
which contradicts (28). So 0<µ .  
 
Proof of Lemma 1. 1. The function ),( ρxux  satisfies 
 

                             
).1,0(;0)(,0)0(),1,0(;0)( ∈<′=∈=′+′′ xxvvxvufv λ                         (29) 
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Suppose that w  has a zero )1,0(0 ∈x . Since w  and xu  satisfy the same differential equation 
(not the same boundary conditions), then by the Sturm comparison Lemma, there is a zero of xu  in 
the interval )1,( 0x , that is a contradiction. So w  is of one sign in )1,0[ .  
 
Proof of Lemma 1. 2. We recall from (6) that a solution ))(.,),(( ρρλ u  of (10)-(12) is stable if the 
principal eigenvalue 1µ  of 
 

                            
,0)1()0(),1,0(;))(.,()( 1 ==′∈−=′+′′ φφφµφρρλφ xuf                           (30) 

 
is non-negative, otherwise it is unstable. Let φ  be the eigenfunction corresponding to 1µ , the 
principal eigenvalue for )(.,θuu = . From the equation of xu  and (30), we obtain 
 

                                                   
∫ =+′−′
1

0
1

1
0 .0])([ dxuuu xxx φµφφ                                                 (31) 

 
Using the boundary conditions and 0),1( =θxu , we have 

 

                                                      
∫ =+
1

0
1 .0)0(),0( dxuu xxx φµφθ                                                   (32) 

 
We can assume that 0)( >xφ  for )1,0[∈x , and we also have 0)(),0( <−= θλθ fuxx  and 
0≤xu , thus 01 <µ .  
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