“Research Note”

TOPOLOGICAL RING-GROUPOIDS AND LIFTINGS*

A. FATIH OZCAN, I. ICEN** AND M. HABIL GURSOY

Inonu University, Science and Art Faculty
Department of Mathematics, Malatya, Turkey
iicen@inonu.edu.tr

Abstract – We prove that the set of homotopy classes of the paths in a topological ring is a topological ring object (called topological ring-groupoid). Let \(p : \tilde{X} \rightarrow X \) be a covering map and let \(X \) be a topological ring. We define a category \(UTRCov(X) \) of coverings of \(X \) in which both \(X \) and \(\tilde{X} \) have universal coverings, and a category \(UTRGdCov(\pi_1 X) \) of coverings of topological ring-groupoid \(\pi_1 X \), in which \(X \) and \(\tilde{R}_0 = \tilde{X} \) have universal coverings, and then prove the equivalence of these categories. We also prove that the topological ring structure of a topological ring-groupoid lifts to a universal topological covering groupoid.

Keywords – Fundamental groupoids, topological coverings, topological ring-groupoids

1. INTRODUCTION

Let \(X \) be a connected topological group with zero element 0, and let \(p : \tilde{X} \rightarrow X \) be the universal covering map of the underlying space of \(X \). It follows easily from classical properties of lifting maps to covering spaces that for any point \(\tilde{0} \) in \(\tilde{X} \) with \(p(\tilde{0}) = 0 \), there is a structure of topological group on \(\tilde{X} \) such that \(\tilde{0} \) is the zero element and \(p : \tilde{X} \rightarrow X \) is a morphism of topological groups. We say that the structure of the topological group on \(\tilde{X} \) lifts to \(X \) [1]. It is less generally appreciated that this result fails for the non-connected case. R. L. Taylor [2] showed that the topological group \(X \) determines an obstruction class \(k_X \) in \(H^3(\pi_0 X, \pi_1(X,0)) \), and that the vanishing of \(k_X \) is a necessary and sufficient condition for the lifting of the topological group structure on \(X \) to the universal covering so that the projection is a morphism. This result was generalized in terms of group-groupoids and crossed modules [3], and then written in a revised version in [4]. A topological version of that was also given in [5].

The ring version of the above results was proved in [6]. Let \(\tilde{X} \) and \(X \) be connected topological spaces and let \(p : \tilde{X} \rightarrow X \) be a universal covering. If \(X \) is a topological ring with a zero element 0, and \(\tilde{0} \in \tilde{X} \) such that \(p(\tilde{0}) = 0 \), then the ring structure of \(\tilde{X} \) lifts to \(\tilde{X} \) [6]. That is, \(\tilde{X} \) becomes a topological ring with zero element \(\tilde{0} \in \tilde{X} \) such that \(p : \tilde{X} \rightarrow X \) is a morphism of topological rings.

In [6] Mucuk defined the notion of a ring-groupoid. He also proved that if \(X \) is a topological ring, then the fundamental groupoid \(\pi_1 X \), which is the set of all relative to end points homotopy classes of paths in the topological space \(X \), becomes a ring-groupoid. In addition to this, he proved that if \(X \) is a topological ring whose underlying space has a universal covering, then the category \(TRCov(X) \) of topological ring coverings of \(X \) is equivalent to the category \(RGCov(\pi_1 X) \) of ring-groupoid coverings of \(\pi_1 X \).

In this paper we present a similar result for a topological ring-groupoid. The topological ring-groupoid is a topological ring object in the category of topological groupoids. Let \(R \) be a topological ring-
We call a subset \(U \) of \(X \) liftable if it is open, path connected and the inclusion \(U \rightarrow X \) maps each fundamental group \(\pi_1(U, x), x \in X \), to the trivial subgroup of \(\pi_1(X, x) \). Remark that if \(X \) has a universal covering, then each point \(x \in X \) has a liftable neighborhood [3].

A groupoid consists of two sets \(R \) and \(R_0 \) called respectively the set of morphisms or elements and the set objects of the groupoid together with two maps \(f, R \rightarrow R_0 \), called source and target maps respectively, a map \(1_x : R_0 \rightarrow R, x \mapsto x \) called the object map and a partial multiplication or composition \(R_0 \times_R R \rightarrow R, (b, a) \mapsto b \circ a \) is defined on the pullback

\[
R_a \times_R R = \{(b, a) : \alpha(b) = \beta(a)\} [7].
\]

These maps are subject to the following conditions:
1. \(\alpha(b \circ a) = \alpha(a) \) and \(\beta(b \circ a) = \beta(b) \), for each \((b, a) \in R_0 \times R \),
2. \(c \circ (b \circ a) = (c \circ b) \circ a \) for all \(c, b, a \in R \) such that \(\alpha(b) = \beta(c) \) and \(\alpha(a) = \beta(b) \),
3. \(\alpha(1_x) = \beta(1_x) = x \) for each \(x \in R_0 \), where \(1_x \) is the identity at \(x \),
4. \(a \circ 1_{a(a)} = a \) and \(1_{\beta(a)} \circ a = a \) for all \(a \in R \), and
5. each element \(a \) has an inverse \(a^{-1} \) such that \(\alpha(a^{-1}) = \beta(a) \), \(\beta(a^{-1}) = \alpha(a) \) and \(a^{-1} \circ a = 1_{a(a)}, a \circ a^{-1} = 1_{\beta(a)} \).

Let \(R \) be a groupoid. For each \(x, y \in R_0 \) we write \(R(x, y) \) as a set of all morphisms \(a \in R \) such that \(\alpha(a) = x \) and \(\beta(a) = y \). We will write \(St_{R_0}x \) for the set \(\alpha^{-1}(x) \), and \(CoSt_{R_0}x \) for the set \(\beta^{-1}(x) \) for \(x \in R_0 \). The object or vertex group at \(x \) is \(R(x) = St_{R_0}x \cap CoSt_{R_0}x \). We say \(R \) is transitive (resp. 1-transitive, simply transitive) if for each \(x, y \in R_0 \), \(R(x, y) \) is non-empty (resp. a singleton, has no more than one element).

Let \(R \) and \(H \) be two groupoids. A morphism from \(H \) to \(R \) is a pair of maps \(f:H \rightarrow R \) and \(f_0:H_0 \rightarrow R_0 \) such that \(\alpha \circ f = f_0 \circ \alpha \), \(\beta \circ f = f_0 \circ \beta \) and \(f(b \circ a) = f(b) \circ f(a) \) for all \((b, a) \in H_0 \times_R H \).

We refer to [8] and [9] for more details concerning the basic concepts.

Covering morphisms of groupoids are defined in [8] as follows:

A morphism \(f:H \rightarrow R \) of groupoids is called a covering morphism if for each \(x \in H_0 \), the restriction of \(f \) mapping \(f_\#:St_{H_0}x \rightarrow St_{R_0}(f(x)) \) is bijective. Also, the following definition of pullback is given in [10].

Let \(R_\alpha \times_R H_0 \) be the pullback

\[
R_\alpha \times_R H_0 = \{(a, x) \in R \times H_0 : \alpha(a) = f_\#(x)\}.
\]

If \(f:H \rightarrow R \) is a covering morphism, then we have a lifting function \(s_f : R_\alpha \times_R H_0 \rightarrow H \) assigning to the pair \((a, x) \) in \(R_\alpha \times_R H_0 \) the unique element \(b \) of \(St_{R_0}x \) such that \(f(b) = a \). Clearly \(s_f \) is inverse to \((f, \alpha) : H \rightarrow R_\alpha \times_R H_0 \). So it is stated that \(f:H \rightarrow R \) is a covering morphism if and only if \((f, \alpha) : H \rightarrow R_\alpha \times_R H_0 \) is bijective.

Let \(f:H \rightarrow R \) be a morphism of groupoids. Then for an object \(x \in H_0 \) the subgroup \(f[H(x)] \) of \(R(f(x)) \) is called the characteristic group of \(f \) at \(x \). So if \(f \) is the covering morphism then \(f \) maps \(H(x) \) isomorphically to \(f[H(x)] \). We say that a covering morphism \(f:H \rightarrow R \) is a universal covering morphism if \(H \) is 1-transitive.
A topological groupoid is a groupoid \(R \) such that the sets \(R \) and \(R_0 \) are topological spaces, and source, target, object, inverse and composition maps are continuous. Let \(R \) and \(H \) be two topological groupoids. A morphism of topological groupoids is a pair of maps \(f:H\rightarrow R \) and \(f_0:H_0\rightarrow R_0 \) such that \(f \) and \(f_0 \) are continuous. A morphism \(f:H\rightarrow R \) of topological groupoids is called a topological covering morphism if and only if \((f,\alpha) : H \rightarrow R_0 \times_{H_0} H_0 \) is a homeomorphism.

A topological ring is a ring \(R \) with a topology on the underlying set such that the ring structure maps (i.e., group multiplication, group inverse and ring multiplication) are continuous. A topological ring morphism (topological homomorphism) of a topological ring into another is an abstract ring homomorphism which is also a continuous map.

Definition 1. A topological ring-groupoid \(R \) is a topological groupoid endowed with a topological ring structure such that the following ring structure maps are morphisms of topological groupoids:

1. \(m:R\times R\rightarrow R, (a,b)\mapsto a+b \), group multiplication,
2. \(u:R\rightarrow R, a\mapsto -a \), group inverse map,
3. \(0:(\ast)\rightarrow R \), where \((\ast) \) is a singleton.
4. \(n:R\times R\rightarrow R, (a,b)\mapsto ab \), ring multiplication,

We write \(a+b \) for the group multiplication, \(ab \) for the ring multiplication of \(a \) and \(b \), and \(b\circ a \) for the composition in the topological groupoid \(R \). Also, by 3 if \(0 \) is the zero element of \(R_0 \) then \(1_0 \) is that of \(R \).

Proposition 2. In a topological ring-groupoid \(R \), we have the interchange laws

1. \((c\circ a)+(d\circ b)=(c+d)\circ (a+b) \) and
2. \((c\circ a)(d\circ b)=(cd)\circ (ab) \)

whenever both \((c\circ a) \) and \((d\circ b) \) are defined.

Proof: Since \(m \) is a morphism of groupoids,

\[
(c\circ a)+(d\circ b)=\left[(c\circ a,d\circ b)\right]=m[(c,d)\circ (a,b)]=m(c,d)\circ m(a,b)\equiv (c+d)\circ (a+b).
\]

Similarly, since \(n \) is a morphism of groupoids we have

\[
(c\circ a)(d\circ b)=\left[(c\circ a,d\circ b)\right]=n[(c,d)\circ (a,b)]=n(c,d)\circ n(a,b)\equiv (cd)\circ (ab).
\]

Example 3. Let \(R \) be a topological ring. Then a topological ring-groupoid \(R\times R \) with object set \(R \) is defined as follows: The morphisms are the pairs \((y,x) \), the source and target maps are defined by \(\alpha(y,x)=x \) and \(\beta(y,x)=y \), the groupoid composition is defined by \((z,y)\circ (y,x)=(z,x) \), the group multiplication is defined by \((z,t)+(y,x)=(z+y,t+x) \) and ring multiplication is defined by \((z,t)(y,x)=(zy,tx) \). \(R\times R \) has product topology. So all structure maps of ring-groupoid \(R\times R \) becomes continuous. Then \(R\times R \) is a topological ring-groupoid.

We know from [6] that if \(X \) is a topological ring, then the fundamental groupoid \(\pi_1 X \) becomes a ring-groupoid. We will now give a similar result.

Proposition 4. Let \(X \) be a topological ring whose underlying space \(X \) has a universal covering. Then the fundamental groupoid \(\pi_1 X \) becomes a topological ring-groupoid.

Proof: Let \(X \) be a topological ring with the structure maps

\[
m:X\times X\rightarrow X, (a,b)\mapsto a+b
\]

\[
n:X\times X\rightarrow X, (a,b)\mapsto ab
\]

\[
0:(\ast)\rightarrow R
\]

and the inverse map
$u: X \to X$, $a \mapsto -a$.

Then these maps give the following induced maps:

\[\pi_1 m: \pi_1 X \times \pi_1 X \to \pi_1 X, ([a],[b]) \mapsto [a+b] \]
\[\pi_1 n: \pi_1 X \times \pi_1 X \to \pi_1 X, ([a],[b]) \mapsto [ab] \]
\[\pi_1 u: \pi_1 X \to \pi_1 X, [a] \mapsto [-a] \]
\[\pi_1 0: \pi_1 (\ast) \to \pi_1 R. \]

It is known from [6] that $\pi_1 X$ is a ring-groupoid. In addition, from [11], $\pi_1 X$ is a topological groupoid. Further, we will prove that the ring multiplication

\[\pi_1 n: \pi_1 X \times \pi_1 X \to \pi_1 X, ([a],[b]) \mapsto [a][b]=[ab] \]

is continuous.

By assuming that X has a universal covering [12], each $x \in X$ has a liftable neighbourhood. Let U consist of such sets. Then $\pi_1 X$ has a lifted topology [8]. So the set U_x consisting of all liftings of the sets in U, forms a basis for the topology on $\pi_1 X$. Let \hat{U} be an open neighbourhood of \hat{e} and a lifting of U in U. Since the multiplication

\[n: X \times X \to X, (a,b) \mapsto ab \]

is continuous, there is a neighborhood V of 0 in X such that $n(V \times V) \subseteq U$. Using the condition on X and choosing V small enough we can assume that V has a liftable neighbourhood. Let \hat{V} be the lifting of V. Then we have $\pi_1 n(\hat{V} \times \hat{V}) \subseteq \hat{U}$. Hence

\[\pi_1 n: \pi_1 X \times \pi_1 X \to \pi_1 X, ([a],[b]) \mapsto [a][b]=[ab] \]

becomes continuous. So $\pi_1 X$ is a topological ring-groupoid.

Proposition 5. Let R be a topological ring-groupoid and let $0 \in R_0$ be the zero element in the ring R_0. Then the transitive component $C_R(0)$ of 0 is a topological ring-groupoid.

Proof: In [6] it was proved that $C_R(0)$ is a ring-groupoid. Further, since $C_R(0)$ is a subset of R, $C_R(0)$ is a topological ring-groupoid with induced topology.

Proposition 6. Let R be a topological ring-groupoid and let $0 \in R_0$ be the zero element in the ring R_0. Then the star $St_R 0 = \{ a \in R : \alpha (a) = 0 \}$ of 0 becomes a topological ring.

The proof is straightforward.

Let R and H be two topological ring-groupoids. A morphism $f: H \to R$ is a morphism of underlying topological groupoids preserving the topological ring structure, i.e., $f(a+b) = f(a) + f(b)$ and $f(ab) = f(a)f(b)$ for $a, b \in H$. A morphism $f: H \to R$ of topological ring-groupoids is called a topological covering morphism if it is a covering morphism on the underlying topological groupoids.

Definition 7. Let R be a topological ring-groupoid and let X be a topological ring. A topological action of the topological ring-groupoid R on X consists of a topological ring morphism $w: X \to R_0$ and a continuous action of the underlying topological groupoid of R on the underlying space of X via $w: X \to R_0$ such that the following interchange laws hold

\[1. (\alpha y) + \iota x = b + a \quad (y + x) \]
\[2. \iota (\alpha y) \iota x = b \quad (y \iota x) \]

\[\iota (\alpha y) \iota x = b \quad (y \iota x) \]
whenever both sides are defined.

Example 8. Let R be a topological ring-groupoid which acts on a topological ring X via $w: X \rightarrow R_0$. In [13] it is proved that $R \times \mathbb{X}$ is a topological groupoid with object set $(R \times \mathbb{X})_0 = X$ and morphism set $R \times \mathbb{X} = \{(a, x) \in R \times X : x = y\}$. Furthermore, the projection $p: R \times \mathbb{X} \rightarrow R$, $(a, x) \mapsto a$ becomes a covering morphism of topological groupoids. Also, in [14] it is shown that if a ring-groupoid R acts on a ring X via $w: X \rightarrow R_0$, then $R \times \mathbb{X}$ becomes a ring-groupoid and the projection $p: R \times \mathbb{X} \rightarrow R$, $(a, x) \mapsto a$ is a covering morphism of ring-groupoids. Clearly, the ring operations

$$(a, x) + (b, y) = (a + b, x + y)$$

and

$$(a, x)(b, y) = (ab, xy)$$

are also continuous since they are defined by the operations of the topological rings R and X. Thus $R \times \mathbb{X}$ becomes a topological ring-groupoid and the projection $p: R \times \mathbb{X} \rightarrow R$, $(a, x) \mapsto a$ is a covering morphism of topological ring-groupoids.

3. TOPOLOGICAL COVERINGS

Let X be a topological space. Then we have a category denoted by $TCov(X)$ whose objects are covering maps $p: \hat{X} \rightarrow X$ and a morphism from $p: \hat{X} \rightarrow X$ to $q: \hat{Y} \rightarrow X$ is a map $f: \hat{X} \rightarrow \hat{Y}$ (hence f is a covering map) such that $p = qf$. Further, we have a groupoid $\pi_1 X$ called a fundamental groupoid [8] and have a category denoted by $GdCov(\pi_1 X)$ whose objects are the groupoid coverings $p: \hat{R} \rightarrow \pi_1 X$ of $\pi_1 X$ and a morphism from $p: \hat{R} \rightarrow \pi_1 X$ to $q: \hat{H} \rightarrow \pi_1 X$ is a morphism $f: \hat{R} \rightarrow \hat{H}$ of groupoids (hence f is a covering morphism) such that $p = qf$.

We recall the following result from Brown [8].

Proposition 9. Let X be a topological space which has a universal covering. Then the category $TCov(X)$ of topological coverings of X and the category $GdCov(\pi_1 X)$ of covering groupoids of fundamental groupoid $\pi_1 X$ are equivalent.

Let X and \hat{X} be topological rings. A map $p: \hat{X} \rightarrow X$ is called a covering morphism of topological rings if p is a morphism of rings and p is a covering map on the underlying spaces. For a topological ring X, we have a category denoted by $TRCov(X)$ whose objects are covering morphisms of topological rings $p: \hat{X} \rightarrow X$ and a morphism from $p: \hat{X} \rightarrow X$ to $q: \hat{Y} \rightarrow X$ is a map $f: \hat{X} \rightarrow \hat{Y}$ (hence f is a covering map) such that $p = qf$. For a topological ring X, the fundamental groupoid $\pi_1 X$ is a ring-groupoid and so we have a category denoted by $RGdCov(\pi_1 X)$ whose objects are the ring-groupoid coverings $p: \hat{R} \rightarrow \pi_1 X$ of $\pi_1 X$ and a morphism from $p: \hat{R} \rightarrow \pi_1 X$ to $q: \hat{H} \rightarrow \pi_1 X$ is a morphism $f: \hat{R} \rightarrow \hat{H}$ of ring-groupoids (hence f is a covering morphism) such that $p = qf$.

Then the following result is given in [6].

Proposition 10. Let X be a topological ring whose underlying space has a universal covering. Then the category $TRCov(X)$ of the topological ring coverings of X is equivalent to the category $RGdCov(\pi_1 X)$ of ring-groupoid coverings of the ring-groupoid $\pi_1 X$.

In addition to these results, here we prove Theorem 11.

Let $UTRCov(X)$ be the full subcategory of $TRCov(X)$ on those objects $p: \hat{X} \rightarrow X$ in which both \hat{X} and X have universal coverings. Let $UTRGdCov(\pi_1 X)$ be the full subcategory of $TRGdCov(\pi_1 X)$ on those objects $p: \hat{R} \rightarrow \pi_1 X$ in which X and $\hat{R}_0 = \hat{X}$ have universal coverings. Then we prove the following result.

Theorem 11. The categories $UTRCov(X)$ and $UTRGdCov(\pi_1 X)$ are equivalent.
Proof: Define a functor

\[\pi_1: UTRCov(X) \to UTRGdCov(\pi_1X) \]

as follows: Let \(p: \tilde{X} \to X \) be a covering morphism of topological rings in which both underlying spaces \(\tilde{X} \) and \(X \) have universal coverings. Then the induced morphism \(\pi_1p: \pi_1\tilde{X} \to \pi_1X \) is a covering morphism of ring-groupoids [6]. Further, \(\pi_1p \) is a morphism of topological group-groupoids [11]. So \(\pi_1p \) becomes a morphism of topological ring-groupoids. Since \(\pi_1p \) is a covering morphism of ring-groupoids, \((\pi_1p, \alpha): \pi_1\tilde{X} \to \pi_1X_{\alpha} \times_{(\pi_1p)_0} (\pi_1\tilde{X})_0 \) is bijective. On the other hand, \(\pi_1p \) is a morphism of topological ring-groupoids and \(\alpha \) is source map of topological ring-groupoid \(\pi_1X \), so \((\pi_1p, \alpha) \) becomes continuous. We prove that \((\pi_1p, \alpha)\) is an open mapping.

Let \([\tilde{a}]\) be a morphism of \(\pi_1\tilde{X} (\tilde{x}, \tilde{y}) \). Since \(X \) and \(\tilde{X} \) have universal coverings, \(\pi_1X \) and \(\pi_1\tilde{X} \) have lifting topology. So we can choose liftable neighbourhoods \(\tilde{V}, \tilde{V}' \) of \(\tilde{x}, \tilde{y} \), respectively such that \(U=\pi(\tilde{V}) \), \(\tilde{U}'=\pi(\tilde{V}') \) are liftable neighbourhoods of \(x=p(\tilde{x}), y=p(\tilde{y}) \), respectively. If \(W = V_\epsilon(\tilde{y})(\tilde{V}')^{-1} \), then \(\pi_1p(W) \) is a basic neighbourhood of \(\pi_1p([\tilde{a}]) \), while \((\pi_1p, \alpha)(W)=\pi_1p(W)_\alpha \times_{(\pi_1p)_0} V \), which is open in \(\pi_1X_{\alpha} \times_{(\pi_1p)_0} \tilde{X} \). So \((\pi_1p, \alpha)\) is a homeomorphism. Hence \(\pi_1p: \pi_1\tilde{X} \to \pi_1X \) becomes a covering morphism of topological ring-groupoids.

We now define a functor

\[\Gamma: UTRGdCov(\pi_1X) \to UTRCov(X) \]

as follows: Let \(q: \tilde{R} \to \pi_1X \) be a covering morphism of topological ring-groupoids in which both \(\tilde{R}_0 = \tilde{X} \) and \(X \) have universal coverings. Since \(X \) has a universal covering, \(\tilde{X} \) has lifting topology. Hence we have a covering map \(p: \tilde{X} \to X \) of topological spaces, where \(p=q_0 \) and \(\tilde{R}_0 = \tilde{X} \) [8]. Further, since \(q \) is a covering morphism of topological ring-groupoids, \(q \) and \(p=q_0 \) are morphisms of topological rings. So \(p \) becomes a covering morphism of topological rings.

Since the category of topological ring coverings is equivalent to the category of ring-groupoid coverings, by Proposition 10 the proof is completed by the following diagram:

\[\begin{array}{ccc}
UTRCov(X) & \xrightarrow{\pi_1} & UTRGdCov(\pi_1X) \\
\downarrow & & \downarrow \\
TRCov(X) & \xrightarrow{\pi_1} & RGdCov(\pi_1X)
\end{array} \]

Before giving the main theorem we adopt the following definition:

Definition 12. Let \(p: \tilde{R} \to R \) be a covering morphism of groupoids and \(q: H \to R \) a morphism of groupoids. If there exists a unique morphism \(\tilde{q}: H \to \tilde{R} \) such that \(q=p \tilde{q} \) then we say that \(q \) lifts to \(\tilde{q} \) by \(p \).

We recall the following theorem from [8] which is an important result to have the lifting maps on covering groupoids.

Theorem 13. Let \(p: \tilde{R} \to R \) be a covering morphism of groupoids, \(x \in R_0 \) and \(\tilde{x} \in \tilde{R}_0 \) such that \(p_0(\tilde{x})=x \). Let \(q: H \to R \) be a morphism of groupoids such that \(H \) is transitive and \(\tilde{y} \in H_0 \) such that \(q_0(\tilde{y})=x \). Then the morphism \(q: H \to R \) uniquely lifts to a morphism \(\tilde{q}: H \to \tilde{R} \) such that \(\tilde{q}_0(\tilde{y})=\tilde{x} \) if and only if \(q[H(\tilde{y})] \subseteq p[\tilde{R}(\tilde{x})] \), where \(H(\tilde{y}) \) and \(\tilde{R}(\tilde{x}) \) are the object groups.

Let \(R \) be a topological ring-groupoid and let \(0 \in R_0 \) be the zero element in the ring \(R_0 \). Let \(\tilde{R} \) be just a topological groupoid and let \(p: \tilde{R} \to R \) be a covering morphism of topological groupoids \(\tilde{0} \in \tilde{R}_0 \) such that \(p(\tilde{0})=0 \). We say the topological ring structure of \(R \) lifts to \(\tilde{R} \) if there exists a topological ring structure on \(\tilde{R} \) with the zero element \(\tilde{0} \in \tilde{R}_0 \), such that \(\tilde{R} \) is a topological ring-groupoid and \(p: \tilde{R} \to R \) is a morphism of topological ring-groupoids.
Theorem 14. Let \(\hat{R} \) be a topological groupoid and let \(R \) be a topological ring-groupoid. Let \(p: \hat{R} \to R \) be a universal covering on the underlying groupoids such that both groupoids \(R \) and \(\hat{R} \) are transitive. Let \(0 \) be the zero element in the ring \(R_0 \) and \(\hat{0} \in \hat{R}_0 \) such that \(p(\hat{0}) = 0 \). Then the topological ring structure of \(R \) lifts to \(\hat{R} \) with zero element \(\hat{0} \).

Proof: Since \(R \) is a topological ring-groupoid, it has the following maps:

\[
\begin{align*}
m &: R \times R \to R, \quad (a, b) \mapsto a + b \\
n &: R \times R \to R, \quad (a, b) \mapsto ab \\
u &: R \to R, \quad a \mapsto -a \\
o &: \{ * \} \to R.
\end{align*}
\]

Since \(\hat{R} \) is a universal covering, the object group \(\hat{R}(\hat{0}) \) has one element at most. So by Theorem 13 these maps respectively lift to the maps

\[
\begin{align*}
\hat{m} &: \hat{R} \times \hat{R} \to \hat{R}, \quad (\hat{a}, \hat{b}) \mapsto \hat{a} + \hat{b} \\
\hat{n} &: \hat{R} \times \hat{R} \to \hat{R}, \quad (\hat{a}, \hat{b}) \mapsto \hat{a} \hat{b} \\
\hat{u} &: \hat{R} \to \hat{R}, \quad \hat{a} \mapsto -\hat{a} \\
\hat{o} &: \{ \hat{*} \} \to \hat{R}.
\end{align*}
\]

by \(p: \hat{R} \to R \) such that

\[
\begin{align*}
p(\hat{a} + \hat{b}) &= p(\hat{a}) + p(\hat{b}), \\
p(\hat{a} \hat{b}) &= p(\hat{a}) p(\hat{b}), \\
p(\hat{u}(\hat{a})) &= -p(\hat{a}).
\end{align*}
\]

Since the multiplication \(m: R \times R \to R, \quad (a, b) \mapsto a + b \) is associative, we have \(m(m \times 1) = m(1 \times m) \), where \(1 \) denotes the identity map. Then again by Theorem 13 these maps \(m(m \times 1) \) and \(m(1 \times m) \) respectively lift to

\[
\begin{align*}
\hat{m}(\hat{m} \times 1), \hat{m}(1 \times \hat{m}): \hat{R} \times \hat{R} \times \hat{R} \to \hat{R}
\end{align*}
\]

which coincide on \((\hat{0}, \hat{0}, \hat{0}) \). By the uniqueness of the lifting we have \(\hat{m}(\hat{m} \times 1) = \hat{m}(1 \times \hat{m}) \), i.e., \(\hat{m} \) is associative. Similarly, \(\hat{n} \) is associative. In a similar way, we can show that \(\hat{0} \) is the zero element and \(-\hat{a}\) is the inverse element of \(\hat{a} \). Further, we will prove that the group multiplication

\[
\hat{m}: \hat{R} \times \hat{R} \to \hat{R}, \quad (\hat{a}, \hat{b}) \mapsto \hat{a} + \hat{b}
\]

is continuous.

By assuming that \(R \) has a universal covering, we can choose a cover \(U \) of liftable subsets of \(R \). Since the topology on \(\hat{R} \) is the lifted topology, the set consisting of all liftings of the sets in \(U \) forms a basis for the topology on \(\hat{R} \). Let \(\hat{U} \) be an open neighbourhood of \(\hat{0} \) and a lifting of \(U \) in \(\hat{U} \). Since the multiplication

\[
\begin{align*}
m &: R \times R \to R, \quad (a, b) \mapsto a + b
\end{align*}
\]

is continuous, there is a neighbourhood \(V \) of \(0 \) in \(R \) such that \(m(V \times V) \subseteq U \). Using the condition on \(R \) and choosing \(V \) small enough, we can assume that \(V \) is liftable. Let \(\hat{V} \) be the lifting of \(V \). Then \(p \hat{m}(\hat{V} \times \hat{V}) = m(V \times V) \subseteq U \) and so we have \(\hat{m}(\hat{V} \times \hat{V}) \subseteq \hat{U} \). Hence

\[
\hat{m}: \hat{R} \times \hat{R} \to \hat{R}, \quad (\hat{a}, \hat{b}) \mapsto \hat{a} + \hat{b}
\]

becomes continuous. Similarly, \(\hat{n} \) is continuous. Further, the distributive law is satisfied as follows:

Let \(p_1, p_2: R \times R \times R \to R \) be the morphisms defined by
\[p_1(a,b,c) = ab, \quad p_2(a,b,c) = bc \]

and

\[(p_1, p_2): R \times R \times R \rightarrow R \times R, \quad (a, b, c) \mapsto (ab, bc) \]

for \(a, b, c \in R \). Since the distributive law is satisfied in \(R \), we have \(n(1 \times m) = m(p_1, p_2) \). The maps \(n(1 \times m) \) and \(m(p_1, p_2) \) respectively lift to the maps

\[\tilde{n}(1 \times \tilde{m}), \tilde{m}(\tilde{p}_1, \tilde{p}_2) : \tilde{R} \times \tilde{R} \times \tilde{R} \rightarrow \tilde{R} \]

coinciding at \((\tilde{0}, \tilde{0}, \tilde{0})\). So by Theorem 13 we have \(\tilde{n}(1 \times \tilde{m}) = \tilde{m}(\tilde{p}_1, \tilde{p}_2) \). That means the distribution law on \(\tilde{R} \) is satisfied. Hence \(\tilde{R} \) becomes a topological ring-groupoid and clearly \(p \) is a morphism of the topological ring-groupoid.

REFERENCES