Iranian Journal of Science & Technology, Transaction A, Vol. 31, No. A2
Printed in The Islamic Republic of Iran, 2007
© Shiraz University

SEQUENTIAL ESTIMATION IN A SUBCLASS OF EXPONENTIAL
FAMILY UNDER WEIGHTED SQUARED ERROR LOSS

N. NEMATOLLAHI", M. JAFARI JOZANI AND N. MAHLOOJI

Department of Statistics, Faculty of Economics, Allameh Tabatabai University, Tehran, I. R. of Iran
Email: nematollahi @atu.ac.ir

Abstract — In a subclass of the scale-parameter exponential family, we consider the sequential point
estimation of a function of the scale parameter under the loss function given as the sum of the weighted
squared error loss and a linear cost. For a fully sequential sampling scheme, second order expansions are
obtained for the expected sample size as well as for the regret of the procedure. The former researches on
Gamma and Exponential distributions can be deduced from our general results.
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1. INTRODUCTION

The problem of sequential estimation refers to any estimation technique for which the total number of
observations used is not a degenerate random variable. In some problems, sequential estimation must be
used because no procedure that uses a preassigned nonrandom sample size can achieve the desired
objective (for example, the estimation of the parameter 1/p in a sequence of Bernoulli trias). In other
problems a procedure which uses a preassigned nonrandom sample size may exist, but a sequential
estimation procedure may be better in some ways.

The problems of sequential analysis were first studied in the 1940s by Barnard [1] and Wald [2], who
introduced the Sequential Probability Ratio Test (SPRT) independently, Wald and Wolfowitz [3] proved
its optimality, and Haldane [4] and Stein [5] showed how sequential methods can be used to tackle some
unsolved problems in point and interval estimation. There is alarge body of literature on this subject, and
itisgrowing rapidly. For asummary of results, aswell asalist of references, see Lai [6].

Sequential estimation of the scale parameter of Exponential and Gamma distributions have been
considered by Starr and Woodroofe [7], Woodroofe [8], Gosh and Mukhopadhyay [9], Isogai and Uno
[10], Isogai et al. [11] and Uno et a. [12]. Under squared error loss, Starr and Woodroofe [7] considered
the risk efficient estimation of the scale parameter in exponentia distribution and studied some of the first
order properties of the sequential procedure. Also, for the sequential estimation of a function of the
exponential parameter Uno et al. [12] gave the stopping rule and a sufficient condition to get a second
order approximation to the risk of the sequential procedure.

For the estimation of the scale parameter, the scale invariant squared error loss is more appropriate
than the squared error loss. In addition, there are several cases for which the estimation of afunction of the

scale parameter is desired. So, it is natural to use (%_ 1) as an appropriate relative squared error loss
y(0
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function, which is a specia form of weighted squared error loss function. Hence, in this paper we consider
the loss as the sum of the weighted squared error loss and a linear cost, which includes scale invariant
sguared error loss. We abtain a sequential point estimation of a function of the scale parameter in a
subclass of the scale parameter exponential families of distributions which include Exponential, Weibull,
Gamma, Normal, Inverse Guassian and some other distributions, and determine a stopping rule under the
loss function. Also, a second order approximation to the expected sample size and the risk of the
sequential procedure as the cost per observation tends to zero are given. We show that the results obtained
by Uno et a. [12] in Exponential distribution and Woodroofe [8] in Gamma distribution under sguared

error loss are specia cases of our results.

In Section 2 the subclass of distributions is introduced and the sequential estimation problem is
specified. In section 3, we derive asymptotic expansions of the expected sample size and regret associated
with the proposed procedure. Some specia cases of our results are given in section 4.

2. SEQUENTIAL ESTIMATION IN A SUBCLASS OF EXPONENTIAL FAMILY

Let X;, X,,...be a sequence of independent and identically distributed random variables from a
distribution with density g( ) where g is known and 7 is an unknown scale parameter. In some cases
the above density reduces to

_T(z)
f(@,0) =c(z)0e ¢ ,0>0 1)

where ¢(x) isafunction of x, @ =", v isaknown value and T(X) is a complete sufficient statistic for @
with Gamma (v, 8) - distribution. Examples of distributions of the form (1) are
1. Exponential( #)with 8=, v=1T(X)= X, c(X) =1,

a-1
2. Gamma(ea, ) withknown & and 0=, v=a, T(X)= X, ¢c(X) = li(( )
3. Inverse Gaussian (o, 4) with6’—1 v—l T(X)—i C(X)—(27zx3)_E
. 1 21 21 2X1 b

1

4. Normal (0,2) with@ =&, v% ,T(X):%Xz, () =(27) 2,
5. Weibull(a, B) withknown fand 8 =a”, v =1, T(X) = X’, ¢(X) = B X",
6. Rayleigh ( 4) with 9=ﬁ2,v=1,T(X)=1x2, () = X,

i :B szxa — |a| p-1
TV (X) » (%) F(p/a)x '

k
2r@/k)
Now if X,, X,,..., X,be a random sample of size n from distribution (1), then the joint density of
X1, X5,y X, isgiven by

7. Generalized Gamma(4, p,a) withknown p and &, g=

8. Generalized Laplace(4,K) withknownk and g— < =1 T(X)=|X P, ¢(X)=
k

- T(@)/6
fa) = cemoe 50 g5, @
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where ¢(x,n) =I1c(x) and S(X) :Zn:T(xi) ~ Gamma(nv, #) . Consider the estimation of a function of
the scale parameter 6, say y(6), where l;/ is a positive valued and three times continuously differentiable
function of 6. Given a sample X, X,,..., X,of size n, we want to estimate y=y(6) by

A S(X) .
7n = y(—>) under the loss function

nv
L(7n.7(6)) =W(0) (7, - 7(6)) *+cn, ©)

where ¢ > 0 is the known cost per unit sample and W(6) is a positive valued and two times continuously
differentiable weight function. Specia cases of the loss (3) are scaled invariant squared error loss

~ 2
~ Vn
I—(7m7/(9))=( _1J +cn, (4)
7(0)

and squared error loss

L (70, 7(0) = (70— 7(6) +cn, ()

1 S(X)
choosing w(g) = =@ and wW(6) =1, respectively. Note that - = is the usual estimator of & (i.e.
y v

MLE, UMVUE), hence using invariance property of maximum likelihood estimators, it is reasonable to

. . S(X) . o
estimate (@) by y, =7/(n—‘~/) . Therisk function is given by
R, = R(7,,7(0))= E[L(7,.7(8))] = WO) E(7, - 7(6)) *] + cn.

We want to find an appropriate sample size that will minimize the risk R,. Using Taylor expansion of

7(8()-0) about @ we obtain
ny

E[(7, — 7(9))*] =[7'(0)]" Var (

2
as N — oo, and hence R, = W(8)[/'(6)]* i—+ cn+ 0(%) ,as N — oo . So for sufficiently large n,
v

S(X
%)) vy
nv n
' 2 92
R, = WO OF S+ on, ©

which leads to the following lemma.

Lemma 2-1. Therisk function R, in (6) minimized at

w(é , .
no =029 | (o) 1=n, ™
cv
and for this value
R, ~2cn’". ®)

Since @ is unknown, we can not use the best fixed sample size proceduren,. Further, there is no
fixed sample size procedure that will attain the minimumrisk R, . Thusit is necessary to find a sequential
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sampling rule.
We use the following stopping rule

1o g(X S(X S(X
N =N, =inf {n2m|n2(CV) 2( r(n‘/)),/w( r(n‘/)) ‘7/’( r(]]‘/))” 9
S(X)

where mis the pilot sample size. Now if we estimate y =y (6) by 7, = ;/(N—~) , then therisk is given
by v

Ry =W(0) E[(7n — 7(6))*] + CE(N). (10)

In the next section we derive second order approximation to the expected sample size E(N) and the
risk of the above sequential procedure Ry as ¢ — 0.

3. SECOND ORDER APPROXIMATION

In this section we shall investigate second order asymptotic properties of the sequential procedure. Let

_ 1 _ 1
) V) WY O

S
and Z, = nK(———)/ K(8). Then from (9), the stopping rule N becomes
nv

K(t)

t>0,
N=NC=inf{n2m:Zn>n*}. (12)

S(X)
Using Taylor expansion of y(——) about € and the relations
nv

tw = —{l+t mﬂ"‘/ﬁ}
K(t) 7'(t)  2w(t)

and

Krr(t) _ ZK(t) 1+ tﬂ/”(t) N t2[7”(t)]2 B tzj/(a) (t)
e Y0 rer 20

.\ t;vm) L0 7o v [W(t)],}, 12
w(t) 't Aw(t) () 4 w(t)
we obtain the following lemma.
Lemma3-1. LetY, = ” 1for|—l,2,...andSh—;Yi— o n, then
Z,=N+aS +y,, (13)
where
(1007 @ WO K@) | [SX) K" (7) ”
7'(0) 2 w(6) K@ """ ny 2K (6)
S(X)
and 77, isarandom variable lying between € and ( n~ ).
v
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Let
2
t=inf{n>1:n+a§, >0} andp:M (15)
2E(t+a )
Following assumptions of Aras and Woodroofe [13], namely
(A) {[(Zn —1)*]3, n> m} is uniformly integrable
&,
for some 0< &, <1, where X" = max (x,0),
(A) D nP{y, <—&n <o for some 0< ¢, <1,
we obtain the following approximation to E(N) for al 8 € (0,0), but not uniformly in &.
Theorem 3-1. If (A)and (A;) hold true, then
E(N)=n"+p-1+0() as c—0, (16)
where
| _1{“ 07'0) , OO _ 0% ()
v AORAC)S 2y'(0)
o°'wW(@) .1 w(b "), 6* w(®).,| 6> K'@
LOWO) L W) y0) 0% WOl o K
2w@) 6 aw@) y'@)° 4 wo) v 2K(6)
S(X)
Proof: Obviously —— P 5fas n— o, and since 7, is a random variable lying between & and
ny
S(X " "
(~), therefore  7,——6  and  hence K%02) o y K 0) :lzl. Also
nv 2K (09) 2K(©) @
Jnv [ S(X)
2‘”[ n~ —9} 4 W ~N(0,1) ash— . So,
1%

- (SOS)_QJ K1) e

—4 S5l W=y asn—w.
nv 2K(6)

The rest of the proof is the same as the proof of Theorem 1 of Uno et a. [12] with replacingo, 8(o), &
andhby &, 7(0), v and K respectively, is omitted.
We shall now assesstheregret Ry —2cn”. By Taylor's theorem,

7[5()9}7(9) :7/,(6)(5(@_9]+7/’(9)(S()~()_9J
nv 2

nyv nv

N 7 (@) (SO-() B 0} ’ (18)

6 nv

Spring 2007 Iranian Journal of Science & Technology, Trans. A, Volume 31, Number A2



194 N. Nematollahi / et al.

_ S(X)
where ¢, isarandom variable lying between € and =7 S(X) Let Y, = S” 0
such that n" >1. We impose the following assumption v v
(A;): Forsomea>1and u>1,
2au
sup E[IVNT Y, [* <0 and  sup E[lyO(p) 1 <0
0<c<cy <C<Coy

From (A), (Ay)and (A;) we have the following theorem.

Theorem 3-2. If (A), (A))and (A;) hold true, thenas ¢ — 0,

" 2 " 2 (3)
R, - 2cn’ 22{3 L0207 0) 77 [Y'ON° 677 (0)

v N0 E0
g WO 3 5WO) 20}, [W(H)]}m(c)
W) 6 Awe) F©O)  we)

Proof: From (18) we have

Ry —2cn” = w(6) E{ (L) ;/(49)} +cE(N)-2cn’

=wW(0) [y (0)]'E| ———-6 | +cE(N)—2cn’
Nv

+w(0)y' (0)r"(O)E (# - 49J
14

+= W(9)[7”(6’)] E(g—ﬁ]

S(X N
+:—13w(<9>y'(9) E{(%HJ y («pc)}
+%w(e>y"(e) E{{%H] y (rpc)}

Luel[ 2| o
36 Ny ARG

Following the proof of Theorem 2 of Uno et al. [12], when ¢ — O we obtain
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[S(X) ]2
WO (O)]? E| —=——0| +cE(N)-2cn”
Nv

=cvn™ E(Y,)? +cE(N)—2cn’

= Slav+ 307 + 40} +0(0)
\Y

_ 3{3+ 507" ©O) 2o OF 0720
v 7O O 7'(0)

192 W(0) 3 W)  5"(O)) _ po W)

W) & 4 w(o) 7/(9)]_ [w(e)]}”(c)' (21)
s(x) Y
w(@)y'(@)y"(6) E N_‘_g
|4

v 97”(9) E(YN3)
(9)
_c 97"(9) {6+
7'(0)

2

e {_ 107" O) " OF oW (9)7”(@} v09. (@

v 7'(0) [¥'(O)° w(0)y'(0)

,, ) V' e .
OO E[ g —e] A\

_cf3,. L OF
_v{4g [/ OF }W(C)’ >

S(X) 0*
©) ©) 24
- (e)E[( -0)%y ((pc)}] 5 O — —E{(n" V) [y (@)Y, yov =0(C), (24

S(X) 4, (3 9 (3)
E (e)y(e)E{( =2 0)'y (¢c>} TG (@)}
S SEW" /7 0) o)
“30) v
c 6%y (6)
g o), (25)
and
S(X 3,
%ww)y"(e)E{(%—9)5%3’(«/)6)} gy(g]) B Vo) 7 (@o)Veov =0().  (26)
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Substituting (21) — (26) into (20), we get

R, 20 = {3 6-907 0, 7_6.3)g2 L/ OF | (5 1152770
7'(0) "7 e 7'(0)
LOWO) 3 WO 5 51" O)_ W'(H)}+ o(c)

w@) 6 4 w(@) 7'(6) w(9)

_ 3{3+ 207" @) TOLOF 2 700)
vITTTre T s et T 7o

g2 W) 3, 5wW(©) 27"(9)] 2 W ()
we) ¢ 4we) () w(0)

]’}+o(c),as c—0,

this compl etes the proof.

4. SPECIAL CASES

In this section, we consider some special cases of the results obtained in section 3. These special cases are
1. For Exponential (/) -distribution with &= 4, T(X)=X and v=1, Theorem 3-1 and 3-2 with
w(0) =1, i.e. with the loss function, (5) becomes the Theorem 1 and 2 of Uno et a. [12] respectively. So,
the expected sample size E(N) and the regret obtained by Uno et a. [12] are special cases of (16) and (19)
respectively. Also when w(@) =1and y(8) = @, the regret becomes Ry —2cn” = 3c+ 0(c) , which isthe
result obtained by Woodroofe [8].

2. For Gamma(e, 0) - distribution with known «, T(X)= X and v= ¢« in estimation of y(8) =46
under the loss function (5), i.e. W(€) =1, the regret becomes R, —2cn" == + o(c), which is the result
obtained by Woodroofe [8].

3. For scaleinvariant squared error loss (4), we have w(g) =

R, - 20n 22{3_292 70)  57"©0) 7 oy O)
" v 70 T O 4 o)

_927‘3)(9) {7'(0)}? 69y(9)}+0(c)_
7'(0) {r(0)}* 7(0)

Therefore for 7(6) = @, the regret becomes R, —2cn” = 0(c) . Note that the loss function (4) is more
appropriate for estimating the scale parameter than squared error |oss.

The results of section 2 and 3 can be extended to some other distributions which do not necessarily
belong to a scale family, such as Pareto or Beta distributions. A family of distributions that includes these
distributions as specia cases is the family of transformed chi-square distributions which is originally
introduced by Rahman and Gupta [14]. They considered the one parameter exponential family

1

(x,17) = 20D @7
and showed that —2a(X)b() hasa Gamma(% ,2) - distribution if and only if

2¢/()bn) _
b'(7)
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In case j is an integer, —2a(X)b(#;) follows a chi-square distribution with j degrees of freedom. They
called the one parameter exponential family (27), which satisfies (28), the family of transformed chi-
square distributions. For example Beta, Pareto, Exponential, Longnormal and some other distributions
belong to this family of distributions (see Table 1 of Rahman and Gupta[14]).

Now it is easy to show that if condition (28) holds, then the one parameter exponentia family (27) is

in the form of the scale parameter exponential family (1) with V:l, T(X)=a(X) ad g = _i. Hence

2 b(77)
with these substitutions, we can extend the results of section 2 and 3 to the family of transformed chi-

sguare distributions.
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