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Abstract – In a subclass of the scale-parameter exponential family, we consider the sequential point 
estimation of a function of the scale parameter under the loss function given as the sum of the weighted 
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Keywords – Sequential estimation, stopping rule, regret analysis, exponential family, transformed chi-square 
distribution 
 

1. INTRODUCTION 
 

The problem of sequential estimation refers to any estimation technique for which the total number of 
observations used is not a degenerate random variable. In some problems, sequential estimation must be 
used because no procedure that uses a preassigned nonrandom sample size can achieve the desired 
objective (for example, the estimation of the parameter 1/p in a sequence of Bernoulli trials). In other 
problems a procedure which uses a preassigned nonrandom sample size may exist, but a sequential 
estimation procedure may be better in some ways. 

The problems of sequential analysis were first studied in the 1940s by Barnard [1] and Wald [2], who 
introduced the Sequential Probability Ratio Test (SPRT) independently, Wald and Wolfowitz [3] proved 
its optimality, and Haldane [4] and Stein [5] showed how sequential methods can be used to tackle some 
unsolved problems in point and interval estimation. There is a large body of literature on this subject, and 
it is growing rapidly. For a summary of results, as well as a list of references, see Lai [6]. 

Sequential estimation of the scale parameter of Exponential and Gamma distributions have been 
considered by Starr and Woodroofe [7], Woodroofe [8], Gosh and Mukhopadhyay [9], Isogai and Uno 
[10], Isogai et al. [11] and Uno et al. [12]. Under squared error loss, Starr and Woodroofe [7] considered 
the risk efficient estimation of the scale parameter in exponential distribution and studied some of the first 
order properties of the sequential procedure. Also, for the sequential estimation of a function of the 
exponential parameter Uno et al. [12] gave the stopping rule and a sufficient condition to get a second 
order approximation to the risk of the sequential procedure. 

For the estimation of the scale parameter, the scale invariant squared error loss is more appropriate 

than the squared error loss. In addition, there are several cases for which the estimation of a function of the 

scale parameter is desired. So, it is natural to use 2)1
)(

( −
θγ
δ  as an appropriate relative squared error loss 
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function, which is a special form of weighted squared error loss function. Hence, in this paper we consider 

the loss as the sum of the weighted squared error loss and a linear cost, which includes scale invariant 

squared error loss. We obtain a sequential point estimation of a function of the scale parameter in a 

subclass of the scale parameter exponential families of distributions which include Exponential, Weibull, 

Gamma, Normal, Inverse Guassian and some other distributions, and determine a stopping rule under the 

loss function. Also, a second order approximation to the expected sample size and the risk of the 

sequential procedure as the cost per observation tends to zero are given. We show that the results obtained 

by Uno et al. [12] in Exponential distribution and Woodroofe [8] in Gamma distribution under squared 

error loss are special cases of our results.  
In Section 2 the subclass of distributions is introduced and the sequential estimation problem is 

specified. In section 3, we derive asymptotic expansions of the expected sample size and regret associated 
with the proposed procedure. Some special cases of our results are given in section 4. 

 
2. SEQUENTIAL ESTIMATION IN A SUBCLASS OF EXPONENTIAL FAMILY 

 
Let ...,, 21 XX be a sequence of independent and identically distributed random variables from a 
distribution with density )(1

ττ
xg , where g is known and τ is an unknown scale parameter. In some cases 

the above density reduces to 
 

                                                              
( )

( , ) ( ) ,  0
T x

f x c x eν θθ θ θ
−−= >                                                        (1) 

 
where c(x) is a function of x, ντθ ,r=  is a known value and T(X) is a complete sufficient statistic for θ  
with ),( θνGamma - distribution. Examples of distributions of the form (1) are  
1. Exponential( β ) with ,1)(,)(,1, ==== xcXXTνβθ  

2. Gamma( βα , ) with known α  and ,)(,, XXT === ανβθ ,
)(

)(
1

a
xxc

a

Γ
=

−

 

3. Inverse Gaussian ( ),λ∞  with ,
2
1)(,

2
1,1

X
XT === ν

λ
θ ,)2()( 2

1
3 −

= xxc π  

4. Normal ),0( 2σ with ,)2()(,
2
1)(,

2
1, 2

1
22 −

==== πνσθ xcXXT  

5. Weibull( βα , ) with known β and ,)(,1, ββ ναθ XXT ===  ,)( 1−= ββ xxc  

6. Rayleigh ( β ) with ,)(,
2
1)(,1, 22 xxcXXT ==== νβθ  

7. Generalized Gamma ),,( αλ p  with known p  and ,α ,,1
α

ν
λ

θ p
==  ,)( αXXT =  ,

)/(
||)( 1−

Γ
= px

p
xc

α
α  

8. Generalized Laplace ),( kλ  with known k  and ,1,
k

vk == λθ  ,||)( aXXT =  .
)/1(2

)(
k

kxc
Γ

=  

Now if nXXX ,...,, 21 be a random sample of size n from distribution (1), then the joint density of 
nXXX ,...,, 21 is given by  

 

                                                      1
( )/

~ ~
( , ) ( , ) , 0 ,

n

i
i
T x

nf x c x n e
θ

νθ θ θ=
−

− ∑
= >                                                (2) 
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where )(),(
1~ i

n

i
xcnxc

=
Π=  and ∑

=
=

n

i
i nGammaXTXS

1~
),(~)()( θν . Consider the estimation of a function of 

the scale parameterθ , say )(θγ , where γ  is a positive valued and three times continuously differentiable 

function of θ . Given a sample nXXX ,...,, 21 of size n, we want to estimate )(θγγ =  by 

nγ̂ = )
)(

( ~

ν
γ

n

XS
under the loss function 

 
                                                     ,))(ˆ()())(,ˆ( 2 cnwL nn +−= θγγθθγγ                                                (3) 

 
where 0>c  is the known cost per unit sample and )(θw is a positive valued and two times continuously 
differentiable weight function. Special cases of the loss (3) are scaled invariant squared error loss 
 

                                                          ,1
)(

ˆ
))(,ˆ(

2

cnL n
n +⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−=

θγ
γθγγ                                                     (4) 

 
and squared error loss 

 
                                                         ( ) ,)(ˆ))(,ˆ( 2 cnL nn +−= θγγθγγ                                                      (5) 

 

choosing 
)(

1)( 2 θγ
θ =w  and 1)( =θw , respectively. Note that 

νn

XS )(
~  is the usual estimator of θ  (i.e. 

MLE, UMVUE), hence using invariance property of maximum likelihood estimators, it is reasonable to 

estimate )(θγ  by nγ̂ = )
)(

( ~

ν
γ

n

XS
. The risk function is given by  

 
.]))(ˆ[()())](,ˆ([))(,ˆ( 2 cnEwLERR nnnn +−=== θγγθθγγθγγ  

 
We want to find an appropriate sample size that will minimize the risk nR . Using Taylor expansion of 

)
)(

( ~

ν
γ

n

XS  about θ  we obtain 
 

)1()
)(

()]([]))(ˆ[( ~22

n
o

nv

XS
VarE n +′=− θγθγγ  

 
as ∞→n , and hence )1()]()[(

2
2

n
ocn

nv
wRn ++′=

θθγθ , as ∞→n . So for sufficiently large n,  
 

                                                                cn
n

wRn +′≈
ν
θθγθ

2
2)]([)( ,                                                      (6) 

 
which leads to the following lemma. 
 
Lemma 2-1. The risk function nR  in (6) minimized at  
 

                                                                ∗=′≈ n
cv

wn |)(|)(
0 θγθθ ,                                                      (7) 

 
and for this value 
 
                                                                                ∗≈ cnRn 2 .                                                                  (8) 

 
Since θ  is unknown, we can not use the best fixed sample size procedure 0n . Further, there is no 

fixed sample size procedure that will attain the minimum risk 
0nR . Thus it is necessary to find a sequential 
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sampling rule. 
We use the following stopping rule 

 

                           ,)
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where m is the pilot sample size. Now if we estimate )(θγγ =  by )

)(
(ˆ ~

ν
γγ

N

XS
N = , then the risk is given 

by 
 

                                                      ).(]))(ˆ[()( 2 NcEEwR NN +−= θγγθ                                               (10) 
 

In the next section we derive second order approximation to the expected sample size E(N) and the 
risk of the above sequential procedure NR  as 0→c . 
 

3. SECOND ORDER APPROXIMATION 
 

In this section we shall investigate second order asymptotic properties of the sequential procedure. Let  
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nKZn =  Then from (9), the stopping rule N becomes 
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we obtain the following lemma. 
 
Lemma 3-1. Let 1)(
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i
i
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and nη is a random variable lying between θ  and )

)(
( ~

νn

XS
. 
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Let 
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Following assumptions of Aras and Woodroofe [13], namely 
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we obtain the following approximation to E(N) for all ),0( ∞∈θ , but not uniformly in θ . 
 
Theorem 3-1. If )( 1A and )( 2A  hold true, then 
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The rest of the proof is the same as the proof of Theorem 1 of Uno et al. [12] with replacingσ , )(σθ , ξ  
and h by θ , )(θγ , ψ  and K respectively, is omitted.  

We shall now assess the regret ∗− cnRN 2 . By Taylor's theorem,  
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where cϕ  is a random variable lying between θ  and 
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XS )(
~ . Let 1
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From )( 1A , )( 2A and )( 3A  we have the following theorem.  
 
Theorem 3-2. If )( 1A , )( 2A and )( 3A hold true, then as 0→c ,  
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Proof: From (18) we have 
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Following the proof of Theorem 2 of Uno et al. [12], when 0→c  we obtain 
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Substituting (21) – (26) into (20), we get 
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this completes the proof. 
 

4. SPECIAL CASES 
 

In this section, we consider some special cases of the results obtained in section 3. These special cases are 
1. For Exponential )(β -distribution with βθ = , XXT =)(  and 1=v , Theorem 3-1 and 3-2 with 

1)( =θw , i.e. with the loss function, (5) becomes the Theorem 1 and 2 of Uno et al. [12] respectively. So, 
the expected sample size E(N) and the regret obtained by Uno et al. [12] are special cases of (16) and (19) 
respectively. Also when 1)( =θw and θθγ =)( , the regret becomes )(32 coccnRN +=− ∗ , which is the 
result obtained by Woodroofe [8].  
2. For ),( θαGamma - distribution with known α , XXT =)( and α=v  in estimation of θθγ =)(  
under the loss function (5), i.e. 1)( =θw , the regret becomes )(32 coccnRN +=− ∗

α
, which is the result 

obtained by Woodroofe [8]. 
3. For scale invariant squared error loss (4), we have 

)(
1)( 2 θγ

θ =w , and from (19) the regret becomes 
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Therefore for θθγ =)( , the regret becomes )(2 cocnRN =− ∗ . Note that the loss function (4) is more 
appropriate for estimating the scale parameter than squared error loss.  

The results of section 2 and 3 can be extended to some other distributions which do not necessarily 
belong to a scale family, such as Pareto or Beta distributions. A family of distributions that includes these 
distributions as special cases is the family of transformed chi-square distributions which is originally 
introduced by Rahman and Gupta [14]. They considered the one parameter exponential family 
 
                                                           ,),( )()()()( xhcbxaexf ++= ηηη                                                          (27) 

 
and showed that )()(2 ηbXa−  has a )2,

2
( jGamma - distribution if and only if 

  

                                                                       .
)(

)()(2 j
b

bc
=

′
′

η
ηη

                                                                  (28) 
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In case j is an integer, )()(2 ηbXa−  follows a chi-square distribution with j degrees of freedom. They 
called the one parameter exponential family (27), which satisfies (28), the family of transformed chi-
square distributions. For example Beta, Pareto, Exponential, Longnormal and some other distributions 
belong to this family of distributions (see Table 1 of Rahman and Gupta [14]). 

Now it is easy to show that if condition (28) holds, then the one parameter exponential family (27) is 

in the form of the scale parameter exponential family (1) with )()(,
2

XaXTjv ==  and 
)(

1
η

θ
b

−= . Hence 

with these substitutions, we can extend the results of section 2 and 3 to the family of transformed chi-

square distributions. 
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