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Abstract 

In this work, we apply the radial basis functions for solving the time fractional diffusion-wave equation defined by 
Caputo sense for 2)<(1  . The problem is discretized in the time direction based on finite difference scheme 

and is continuously approximated by using the radial basis functions in the space direction which achieves the 
semi-discrete solution. Numerical results show the accuracy and efficiency of the presented method. 
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1. Introduction 

In recent years, fractional calculus has been 
implemented to express some phenomena in 
physics and engineering. Also, fractional integral 
and derivative have been successful to describe 
many events in fluid mechanics, viscoelasticity, 
chemical physics, electricity, finance, control 
theory, biomedical engineering, heat conduction, 
diffusion problems and other sciences (Kilbas et al., 
2006; Podlubny, 1999). Fractional partial 
differential equations (FPDEs) particularly space-
and time-fractional equations, have been widely 
studied to construe the existence of solution and 
validity of these problems (Li and Xu, 2009; Zhao 
et al., Zhuang et al. 2011). In addition, finding the 
reliable and powerful numerical and analytical 
methods for solving FPDEs have been the focus in 
two last decades. According to the mathematical 
literature, fractional partial differential equations 
have been developed in many various problems in 
science and engineering as the Schröinger, 
telegraph, diffusion and diffusion-wave fractional 
equation (Li and Xu, 2009; Chen et al., 2010a; Li et 
al., 2011; Liu et al., 2006; Mohebbi et al., 2013; 
Zhoa and Li, 2012). 

In 2009, Wen et al. were pioneers in using the 
Kansa method for solving the fractional diffusion 
equation (Chen et al., 2010b) After that the method 
was expanded for solving the other fractional 
equations (Mohebbi et al, 2013; Piret and Hanert, 
2013; Hosseini et al., 2014; Gu et al., 2010). 
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In this work, we implement the meshless method 
for solving time-fractional diffusion-wave equation 
by using radial basis function (RBF). The time 
fractional diffusion-wave equation is obtained from 
the classical diffusion or wave equation by 
replacing the first or second order time derivative 
by a fractional derivative of order   with 

1<<0   or 2<<1  . It is observed that as   
increases from 0 to 2, the process changes from 
slow diffusion to classical diffusion and diffusion-
wave to classical wave process. In fact, this 
equation interpolates between the diffusion and the 
wave equations that behave quite differently 
regarding their response to a localized disturbance: 
whereas the diffusion equation describes a process, 
where a disturbance spreads infinitely fast, the 
propagation speed of the disturbance is a constant 
for the wave equation. Fractional diffusion-wave 
equation has important applications to 
mathematical physics (Al-Khaled and Momani, 
2005; Chen et al., 2012; Giano et al., 1992; Jafari 
and Daftardar-Gejji, 2006; Jafari and Seifi, 2009; 
Jiang et al., 2012). The presented method is the 
coupled RBF and finite difference scheme as is 
handled in (Chen et al., 2010b; Hosseini et al., 
2014; Avazzadeh et al., 2011; Dehghan and Shokri, 
2009). 

The paper is organized in the following way. In 
Section 2, the Caputo fractional derivative and RBF 
methodology as the main ideas for solving 
fractional diffusion-wave equation are described. In 
Section 3, the discretization process of the problem 
in t  direction via finite difference scheme is 
described. Also, using the radial basis functions to 
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obtain the continuous solution with respect to x  is 
investigated. In Section 4, some numerical 
examples are demonstrated which confirm the 
accuracy and applicability of the method. The last 
section includes some other features of the 
presented method, conclusion and further ideas for 
future work.  

2. Basic Definitions 

2.1. Fractional derivative 

Definition: The Caputo fractional derivative 
operator of order 0  , of a function ( )F x  is 

defined as 
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More properties of the fractional Caputo 

derivative can be found in (Kilbas et al., 2006; 
Podlubny, 1999). Also, the further information 
about fractional calculus and another definitions of 
fractional derivatives, one can consult the 
mentioned references.  

2.2. Radial basis functions 

Considering a finite set of interpolation points

1 2={ , , , }Nx x x . So the interpolant of u  is 

constructed in the following form  
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where d  is the dimension, .   is the Euclidean 

norm and ( . )    is a radial function (Buhmann, 

2003; Cheney and Light, 1999). Also, )(xp  is a 

linear combination of polynomials on d  of total 
degree at most 1m  as follows  
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Moreover, the interpolant Su  and additional 

conditions must be determined to satisfy the system 
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where d
m 1  denotes the space of all polynomials 

on d  of total degree at most 1m . The 
generalized thin plate splines (GTPS) are defined as 
follows:  
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m
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where =i ir x x . We note that   in Eq.(5) is 

12 mC  continuous. Therefore, the higher order of 
partial differential needs the higher order of thin 
plate splines. Briefly, u  and u  can be 
approximated as  
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where   can be any partial differential operator. 

The unkown coefficients i  can be found by 

solving the obtianed system after substituting 
Eq.(2) in the proposed problem.  

3. Description of the Method 

Consider the following time-fractional diffusion-

wave equation of order 2)<(1    
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with the initial conditions  
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and the boundary conditions  
 

0,),(=),(),(=),( 21 tthtbuthtau      (8) 
 

where )(),(),(,,, 121 thxgxgba   and )(2 th  are 

given and 
 ttxu  )/,(  represents the Caputo 

fractional derivative and   and   are the given 

constants. According to Eq. (1), 
 ttxu  )/,(  can 

be written as follows:  
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In order to discretize the problem for 

2)<<(1   in time direction, we substitute 
1nt  

into Eq. (9), then the integrals can be reformed as  
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where 0=0t , ttt nn  =1
, Mn 0,1,2,...,= . 

Also, n  can be increased to the time length with 

t  as the time step in which . =t M T . 

Approximation of the second order derivative due 
to the forward finite difference formulae is defined 
as  
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Replacement of Eq. (11) into Eq. (10) gives,  
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where .,0,1,=),,(= Mktxuu kk   By 

considering rtn =1 
, the integral will be 

obtained as follows:  
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Rearrangement of Eq. (12) and assumption 

   22 )(1)(= kkbk  lead to  
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where 
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We note that the Eq.(6) in 
1= ntt  due to  -

weighted finite difference formulation is as follows:  
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where 10    is a constant, 

),(= 22 nn txuu   and 
11 =),(  nn ftxf . 

Now, we substitute Eq. (14) into Eq. (15) and 
obtain 
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where = 0,1, 2,..., .n M  Note that 
1u  will be 

observed when 0=n  or nk = . So, we use the 

initial conditions to approximate 
1u  as follows 
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at 0=n  and 1n , respectively. Now we 

approximate the )(xun
 by radial basis functions as 

follows:  
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where 211 ,,,...,  NNN   are unknowns. So, 

we consider N  collocation points to obtain the 
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values of coefficients 21,2,...=, Nkk  in 

the interpolant of )(xun
 as  
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where =ij i jr x x   when .   is the Euclidean 

norm, and ( . )    is a radial function. The 

additional conditions can be described as 
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By considering Eq. (20) together with Eq. (21) in 

a matrix form, we obtain  
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In addition, discretization of u2  is as follows:  
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where =j jr x x . Thus, substituting the 

collocation points gives  
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Reconstruction of Eq. (17) in the matrix form can 

be illustrated as follows  
 

1 1[ ] = [ ] ,c B                                                     (26) 
 
in which  
 

11 1 1 1

1

1

1

( ) ( ) ( ) ( ) (1)

( ) ( ) ( ) ( ) (1)

= ,

( ) ( ) ( ) ( ) (1)

0 0

1 1 1 0 0

j N

i ij iN i

N Nj NN N

j N

L L L L x L

L L L L x L

B

L L L L x L

x x x

  

  

  

 
 
 
 
 
 
 
 
 
  

 

      

 

      

 

 

    

 (27) 

 
where L  is an operator defined by Eq. (17) as  
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and finally considering boundary conditions 
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2
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method for 2=  coincides with the coupled 
method of FDM and radial basis function for 
integer orders (Avazzadeh et al., 2011; Dehghan 
and Shokri, 2009; Dehghan and shokri, 2008). 

4. Numerical Results 

In this section, we investigate practically the 
applicability and efficiency of the presented 
method. Thus we implement the method for solving 
some examples with different parameters. Clearly, 
increasing the number of collocation points, N , 
decreasing the length of time step, t , and growth 

of m  which is order of generalized thin plate 
splines (GTPS) could improve the results. It is 
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Table 1. The root mean square (RMS) and infinity norm of error 
function with different n  and   for Example 1. 

 
    = 1.25      = 1.5    = 1.75     = 1.95   

  n    L -error 
RMS-error 

 L -error 
RMS-error  L -error  

RMS-error 
 L -error 

RMS-error  

  10 1.5565 E-4  5.8833 E-07   1.5557 E-4 5.8291 E-07  1.5559 E-4 5.7850 E-07  1.5573 E-4 5.7586 E-07 
  20 1.5564 E-4  5.5403 E-07   1.5556 E-4 5.4850 E-07  1.5565 E-4 5.4481 E-07  1.5595 E-4 5.4277 E-07 
  50 1.5563 E-4  5.3333 E-07   1.5556 E-4 5.2782 E-07  1.5569 E-4 5.2526 E-07  1.5619 E-4 5.2413 E-07 

  100 1.5563 E-4  5.2639 E-07   1.5555 E-4 5.2092 E-07  1.5570 E-4 5.1889 E-07  1.5630 E-4 5.1812 E-07 
 

Table 2. Numerical results for Example 1 with different n  and   at 1=t  
 
                      = 1.5                        = 1.25         = 1.75    Exact Solution 

x  = 10n   = 20n = 50n  
 

= 10n = 50n  = 10n = 50n    ,1u x

0.1 0.09950933 0.09951043 0.09951107  0.09950226 0.09950368  0.09951844 0.09952297  0.10016675 

0.2 0.20079972 0.20080174 0.20080291  0.20078691 0.20078954  0.20081683 0.20082524  0.20133600 

0.3 0.30402685 0.30402960 0.30403116  0.30400968 0.30401323  0.30405039 0.30406191  0.30452029 

0.4 0.41029949 0.41030268 0.41030448  0.41027962 0.41028373  0.41032718 0.41034071  0.41075232 

0.5 0.52065615 0.52065950 0.52066138  0.52063540 0.52063970  0.52068530 0.52069953  0.52109530 

0.6 0.63621617 0.63621936 0.63622115  0.63619639 0.63620048  0.63624390 0.63625745  0.63665358 

0.7 0.75812244 0.75812517 0.75812672  0.75810541 0.75810893  0.75814606 0.75815761  0.75858370 

0.8 0.88761746 0.88761947 0.88762062  0.88760481 0.88760740  0.88763465 0.88764309  0.88810598 

0.9 1.02593218 1.02593326 1.02593389  1.02592522 1.02592662  1.02594135 1.02594589  1.02651672 

1.0 1.17520119 1.17520119 1.17520119  1.17520119 1.17520119  1.17520119 1.17520119  1.17520119 

 
Example 2. Consider the fractional diffusion-wave 

equation Eq.(6) in [0,1], 1= , 1=  and

),( txf  which is compatible with the exact 

solution as follows  
 

),(exp
)(1

=),( tx
xsin

xt
txu 




 

 
The approximated solution and error functions are 

shown in Fig. 1. Also, the error functions at 
0.5=t  and 1=t  are illustrated for different   

in Fig. 2 for both Examples 1 and 2. Observably the 
error value is often increasing when   grows up. 
Also, the approximated value at 1=t  for different 
n  and   are reported in Table 3.  

5. Conclusion 

In this study, we implemented the RBF method for 
solving the fractional diffusion-wave equation and 
numerical results show the validity and accuracy of 
the method. According to the method, the solution 
is approximated continuously with respect to space 
direction by using the radial basis function. 
Obviously, the results could be improved by 
refinement of meshsize in the both of time and 
space directions. Moreover, description of the 
proposed method shows the method is flexible for 
different boundary conditions. However it is 
necessary to investigate the initial conditions 

correspondingly to Eq. (16) in the description of 
method. In fact, we can modify the first and N  th 
row of the matrix in Eq. (27) with regard to the 
non-classic conditions. Therefore, the method is 
applicable to solve the large class of different type 
of fractional diffusion-wave equations. At last, 
implementation of the proposed method leads to the 
only linear equations systems through the recursive 
equation Eq. (18). Hence, the method can be 
considered fast, simple and efficient. 
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