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Abstract

In this work, we apply the radial basis functions for solving the time fractional diffusion-wave equation defined by
Caputo sense for (1< <2). The problem is discretized in the time direction based on finite difference scheme

and is continuously approximated by using the radial basis functions in the space direction which achieves the
semi-discrete solution. Numerical results show the accuracy and efficiency of the presented method.
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1. Introduction

In recent years, fractional calculus has been
implemented to express some phenomena in
physics and engineering. Also, fractional integral
and derivative have been successful to describe
many events in fluid mechanics, viscoeagticity,
chemical physics, electricity, finance, control
theory, biomedical engineering, heat conduction,
diffusion problems and other sciences (Kilbas et al.,
2006; Podlubny, 1999). Fractional partia
differential equations (FPDEs) particularly space-
and time-fractional equations, have been widely
studied to construe the existence of solution and
validity of these problems (Li and Xu, 2009; Zhao
et a., Zhuang et al. 2011). In addition, finding the
reliable and powerful numerical and analytical
methods for solving FPDEs have been the focus in
two last decades. According to the mathematical
literature, fractional partial differential equations
have been developed in many various problems in
science and engineering as the Schrdinger,
telegraph, diffusion and diffusion-wave fractional
equation (Li and Xu, 2009; Chen et al., 2010a; Li et
a., 2011; Liu et al., 2006; Mohebbi et a., 2013;
Zhoaand Li, 2012).

In 2009, Wen et al. were pioneers in using the
Kansa method for solving the fractional diffusion
equation (Chen et al., 2010b) After that the method
was expanded for solving the other fractiona
equations (Mohebbi et al, 2013; Piret and Hanert,
2013; Hosseini et al., 2014; Gu et a., 2010).
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In this work, we implement the meshless method
for solving time-fractional diffusion-wave equation
by using radial basis function (RBF). The time
fractional diffusion-wave equation is obtained from
the classical diffusion or wave equation by
replacing the first or second order time derivative
by a fractiona derivative of order o with
O<a<lorl<a<2.ltisobservedthat as o
increases from 0 to 2, the process changes from
slow diffusion to classical diffusion and diffusion-
wave to classica wave process. In fact, this
equation interpolates between the diffusion and the
wave equations that behave quite differently
regarding their response to a localized disturbance:
whereas the diffusion equation describes a process,
where a disturbance spreads infinitely fast, the
propagation speed of the disturbance is a constant
for the wave equation. Fractional diffusion-wave
equation has important  applications to
mathematical physics (Al-Khaled and Momani,
2005; Chen et al., 2012; Giano et d., 1992; Jafari
and Daftardar-Gejji, 2006; Jafari and Seifi, 2009;
Jiang et al., 2012). The presented method is the
coupled RBF and finite difference scheme as is
handled in (Chen et a., 2010b; Hosseini et a.,
2014; Avazzadeh et al., 2011; Dehghan and Shokri,
2009).

The paper is organized in the following way. In
Section 2, the Caputo fractional derivative and RBF
methodology as the main ideas for solving
fractional diffusion-wave equation are described. In
Section 3, the discretization process of the problem
in t direction via finite difference scheme is
described. Also, using the radial basis functions to
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obtain the continuous solution with respect to x is
investigated. In Section 4, some numerica
examples are demonstrated which confirm the
accuracy and applicability of the method. The last
section includes some other features of the
presented method, conclusion and further ideas for
future work.

[l R, k-1<a<k

0

D*F(x) ={ [(k-a)

F(x)

More properties of the fractiona Caputo
derivative can be found in (Kilbas et a., 2006;
Podlubny, 1999). Also, the further information
about fractional calculus and another definitions of
fractional derivatives, one can consult the
mentioned references.

2.2. Radial basis functions

Considering a finite set of interpolation points
X ={X,%,...,Xy} . So the interpolant of u is
constructed in the following form

(SU)(X)=ZA¢(HX—X1 D+px), xeR’,

whered is the dimension, ||.|| is the Euclidean
norm and ¢&(||.||) is aradia function (Buhmann,

2003; Cheney and Light, 1999). Also, P(X) is a

linear combination of polynomials on R® of total
degree at most m—1 asfollows

S m+d-1
pP(X)= > 44,(x), I=[ j 3)
j=N+1 d

Moreover, the interpolant Su and additional
conditions must be determined to satisfy the system

(Su)(x) =u(x), i=1,2,...,N,
N )
;/llqj(xi)zo’ foral q; eIl 4,

where H?nfl denotes the space of al polynomials

on R of tota degree at most m-1. The
generalized thin plate splines (GTPS) are defined as
follows:

X =% [)=¢(r) = ri2m log(r; ),

) ()
1 =1,23,..., m=1,23,..,

2. Basic Definitions

2.1. Fractional derivative

Definition: The Caputo fractional derivative
operator of order & >0, of a function F(X) is
defined as

@

a=Kk.

wherel, =|| X—X ||. We note that ¢ in Eq.(5) is

C*™* continuous. Therefore, the higher order of
partial differential needs the higher order of thin
plate splines. Briefly, u and Lu can be
approximated as

u() =~ > A¢(lx=x )+ p(x),  xeR,

)ﬁeX

Lu = Y ALH( X% [)+Lp(X),  xeRS,

)ﬁez’l’

where £ can be any partial differential operator.
The unkown coefficients 4 can be found by
solving the obtianed system after substituting

Eq.(2) in the proposed problem.
3. Description of the Method
Consider the following time-fractional diffusion-

wave equation of order (1< a <2)

o°u(x,t) _ou(x,t)
T+ﬂu(x,t)—}/7+f (X,t), (6)
a<x<h, 0<t<T,

with theinitial conditions

ux0=ag,(x),  u(x0)=g,(x),
as<x<b,

and the boundary conditions
u@t)=h(), ubt)=h(), t=0, @

where 8,0, 2, 9,(X),9,(X),h(t) and h,(t) are
given and 0“U(X,t)/0t” represents the Caputo
fractional derivative and y and [ are the given

constants. According to Eq. (1), 0“U(X,t)/ot” can
be written as follows:
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1 J~x6‘2u(X 5)“ aFede, 1<a<2, (9)

oux,t) _ r2-a)’o o8&
ar | ou.g) we?
o&? '

In order to discretize the problem for
(1<a <2) in time direction, we substitute t™*
into Eg. (9), then the integrals can be reformed as

uxt™) _ 1 p™APUE) i yia
ot Ir(2- a)I 0&? (7 -ede,

1 - k+162U(X ﬁf) n+l l-a
F (2-a) gj 0&? (7 -¢)ras, (19

where t° =0, t"™ =t"+&, n=0,1,2,...M .
Also, n can be increased to the time length with
Ol as the time step in which SttM =T .

Approximation of the second order derivative due
to the forward finite difference formulae is defined
as

ou(x, &) N ulx t™—2u(x,t") +u(x,t"*

) (11)
ot? ot?

Replacement of Eq. (11) into Eq. (10) gives,

au(xt™) _ 1 J‘t”*lé‘zu(x 6) (-
ac  T@-a)k  ae?

n oyt 2u +ukl ket "
“Te- 0:)Z _[k (" - &) *dg, (12)
k=0

&y de,

where U =u(xt“)k=01,...,M. By

considering t™—&=r, the integral will be
obtained asfollows:

tk+l tn+1 a- ld = 2—05 v
[ @t -g)tdg= (2_ a2
Fl)az-a[(n K+1)2" —(n—K)>“]. (13)

Rearrangement of Eg. (12) and assumption

b, = (k+1)%“ - (K)*“ lead to

aaug;t ) - r(bst aa) > U - 20"+ UM (n -k +1)* 7 — (n—k)> 7]
— %Zbk (un—k 1_2un—k +un—k—1)
= ao{un+1_2un+un1+zh<(unk+1_2unk +unk1)},(l4)

k=1

-a

r(3-a)

We note that the Eq.(6) in t =t™" due to @-
weighted finite difference formulation is as follows:

where @, = and N=0,1,2,..,M .

a n+l
0 Ugt(;t )+ﬂ nl {qun+1+(l e)vz n} fn+l’ (15)
where 0<@<1 is a constant,

VAU =VAu(xt") and  f(xt™) =M
Now, we subgtitute Eq. (14) into Eq. (15) and
obtain

{8+ B—yoV? U = {23, - y(1-0)V? U
_aoun—l+aozn:bK(un—k+l_2un—k n-k l)+ fn+1
k=1

wheren=0,1,2,...,M. Note that U™ will be
observed when n=0 or k = n. So, we use the

initial conditions to approximate U™ asfollows

1 -1
o_U-u

28 (19

which  concludes  u'=u'-26tu’  or

ut=u'-26tg,. Therefore, the obtained
recursive equation can be rewritten as

[2a, + - yov2 u* = {28, - y(1- )V Ju° an
+2a,0tu + 1

and

{ao +ﬂ—76’V2} U™t = {Zao 7(1- H)VZ} aou”’l
n-1

+ aQZq( (unfk+1 _ 2unfk + unfkfl)
k=1

+2a)b, (u' —u’-aud) + £, (18)

a n=0 ad n>1, respectively. Now we

approximate the U"(X) by radial basis functions as
follows:

u"() = Zz“q)(r)mwxmaw (19)

where A,..., Ay, Anas Ans, @€ unknowns. So,
we consider N collocation points to obtain the
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vaues of coefficients 4, K=1,2,,.N+2 in
the interpolant of U"(X) as

N
U= Um0 ) 2 D ATl )+ A AT (20)

=1

i =1,2,..,N,

where I, =|| X =X, || when ||.|| is the Euclidean

norm, and ¢(||.|]) is a radiad function. The
additional conditions can be described as

N N
D A= "21x, = 0. (21)
=1 =1

By considering Eq. (20) together with Eq. (21) in
amatrix form, we obtain

[u]n+1 — A[ﬂ]ml, (22)

where [ ]n+1 - [U;_Hlunﬂ RI+100]T and
ﬂ,] n+l - [/ijriwlir;l. B N+2]
(N+2)x (N +2) matrix given by

and A is an

¢11 ¢1j ¢1N X 1

O A )

A=[a]]=| : : : L Do
P ¢Nj codw X 1
X X .. X 0 0
1 -1 .. 1 0O

In addition, discretization of Vzu isasfollows:
N

Vau(x) = 2/1 P 2(p(r) dwl(r), (4
i=1

where I, =||X—=X;[|. Thus, substituting the
collocation points gives

N
Vaux)=>w(), i=2.,N-1L (25
=1

Reconstruction of Eq. (17) in the matrix form can
beillustrated as follows

[c]' = B[A]", (26)

in which

_L(¢11) L(¢1j) L(¢1N) L(Xl) L(l)_

: . : : : : : 27)
L) - L) - Ll LX) L@

B=| : : : : N
Lidw) - L(4y) - L(dw) Lx) LA
XX e Xy 0 0
r - 1 . 1 0 0 |

where L isan operator defined by Eq. (17) as

Ly = {(2a0+,[)’—7/€V2)(*), 1<i<N, (28)
*), i=lori=N,

and [c]' =[c},C5,...,Cy,0,0]" , where

h. i=1
¢ =1(2a, - 7(1-9)VHU + 2a,5tu’ (%) + f1, 1<i<N,
h, i=N.

Also,for n>1,

[C]n+1 — B[/l]ml, (29)

n+l [ n+l n+l n+l 0 O]

where L and [C] ,C,

, are obtained by Eq. (18) as

L(*):{(aoJrﬁ—yHVZ)(*), 1<i <N, (30
*), i =lori =N,

and

" = {28, - y(1-O)V}u —au’*

Fa I AW -2 )
k=1

f n+l

+2ag0, (U U7 = St (X)) + T,
and finaly considering boundary conditions

"™t =h" and ci™=h*t. Obviously the

method for « =2 coincides with the coupled
method of FDM and radial basis function for
integer orders (Avazzadeh et a., 2011; Dehghan
and Shokri, 2009; Dehghan and shokri, 2008).

4. Numerical Results

In this section, we investigate practically the
applicability and efficiency of the presented
method. Thus we implement the method for solving
some examples with different parameters. Clearly,
increasing the number of collocation points, N,
decreasing the length of time step, St, and growth

of m which is order of generalized thin plate
splines (GTPS) could improve the results. It is
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necessary to emphasize the increase of m does not
leed to the increasing of computations or
complexity of mathematical operations, but it leads
to the ill-conditioning (Buhmann, 2003; Powell,
1994; Schaback, 1996; Wu and Schaback, 1993).
Hence, we could increase m restrictively to avoid
the ill-conditioning of the obtained system of linear
equations. The reported results are obtained by

using H:%, m=4 and N =50 for different

n and « . In this study, the infinity norm of error
function is the main criteria for evaluation of
accuracy and efficiency of method.

Example 1. Consider the fractional diffusion-wave
equation Eq. (6) in [0,1], y=7x, f=1 and
f(X,t) which is compatible with the exact

solution as follows
Exact Solution of Example 2

ulx 1)

Absolute error function of Example 2

10 ulx )1

w*on(x)

10 () u(x 1)l

u(x,t) =t*sinh(x),

The semi-discrete approximated solution and
error functions are shown in Fig. 1. Also, the root
mean square of error(RMSE) for random points is
reported in Table 1 for different valueof n and « .
Furthermore, the approximated value at t=1,
where we have the most accumulated error, for
different valueof n and ¢ arereported in Table 2.

Note that the differences between L -error and

RMS-error shown in Table 1 confirm the error
accumulates when n is increasing. Also, the
absolute error functions illustrated in Fig. 1 are
increase with respect to t which construe
accumulation of error with respect to n .

Approximated Solution of Example 2

Fig. 1. Exact solutions, semi-discrete approximated functions and absolute error
functionswith N = 50 and ¢ = 1.5 for Examples 1 and 2 areillustrated.
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Table 1. The root mean square (RMS) and infinity norm of error
function with different n and ¢ for Example 1.

a =1.25 a =15 a =175 a =1.95
n o RMS-error - RMS-error - RMS-error - RMS-error
-error -error -error -error

10 15565 E-4  5.8833 E-07 15557 E-4  5.8291 E-07 15559 E-4  5.7850 E-07 15573 E-4  5.7586 E-07

20 15564 E-4  5.5403 E-07 15556 E-4  5.4850 E-07 15565E-4  5.4481 E-07 15595E-4  5.4277 E-07

50 15563 E-4  5.3333 E-07 15556 E-4  5.2782 E-07 15569 E-4  5.2526 E-07 15619E-4  5.2413 E-07

100 15563 E-4  5.2639 E-07 15555 E-4  5.2092 E-07 15570 E-4  5.1889 E-07 15630 E-4  5.1812 E-07

Table 2. Numerical results for Example 1 with different n and ¢ att =1
a=15 a =125 a =175 Exact Solution

x n=10 n=20 n=50 n=10  n=50 n=10 n=50 u(x1)
0.1 0.09950933 0.09951043  0.09951107 0.09950226 0.09950368 0.09951844  0.09952297 0.10016675
0.2 0.20079972 0.20080174  0.20080291 0.20078691 0.20078954 0.20081683  0.20082524 0.20133600
0.3 0.30402685 0.30402960  0.30403116 0.30400968 0.30401323 0.30405039  0.30406191 0.30452029
0.4 0.41029949 0.41030268  0.41030448 0.41027962 0.41028373 0.41032718  0.41034071 0.41075232
0.5 0.52065615 0.52065950  0.52066138 0.52063540 0.52063970 0.52068530  0.52069953 0.52109530
0.6 0.63621617 0.63621936  0.63622115 0.63619639 0.63620048 0.63624390 0.63625745 0.63665358
0.7 0.75812244 0.75812517  0.75812672 0.75810541 0.75810893 0.75814606 0.75815761 0.75858370
0.8 0.88761746 0.88761947  0.88762062 0.88760481 0.88760740 0.88763465  0.88764309 0.88810598
0.9 1.02593218 1.02593326  1.02593389 1.02592522 1.02592662 1.02594135  1.02594589 1.02651672
1.0 117520119 1.17520119 1.17520119 1.17520119 1.17520119 117520119 1.17520119 1.17520119

Example 2. Consider the fractiona diffusion-wave
equation Eq.6) in [0,1], =1, B=1 and
f(X,t) which is compatible with the exact
solution as follows

u(x,t) = 1:—Xexp(x—t),

+
sin(x)

The approximated solution and error functions are
shown in Fig. 1. Also, the error functions at
t=0.5 and t =1 areillustrated for different «
in Fig. 2 for both Examples 1 and 2. Observably the
error value is often increasing when « grows up.
Also, the approximated value at t =1 for different
n and o arereportedin Table 3.

5. Conclusion

In this study, we implemented the RBF method for
solving the fractional diffusion-wave equation and
numerical results show the validity and accuracy of
the method. According to the method, the solution
is approximated continuously with respect to space
direction by using the radia basis function.
Obviously, the results could be improved by
refinement of meshsize in the both of time and
space directions. Moreover, description of the
proposed method shows the method is flexible for
different boundary conditions. However it is
necessary to investigate the initial conditions

correspondingly to Eg. (16) in the description of
method. In fact, we can modify the first and N th
row of the matrix in Eq. (27) with regard to the
non-classic conditions. Therefore, the method is
applicable to solve the large class of different type
of fractional diffusion-wave equations. At last,
implementation of the proposed method leads to the
only linear equations systems through the recursive
equation Eq. (18). Hence, the method can be
considered fast, simple and efficient.
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x107 Error function of Example 1 at 1=0.5 for different a x 107 Error function of Example 1 at t=1 for different a
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Fig. 2. Error functionsfor N = 30 and different valueof ¢ at t = 0.5 and t =1 for Examples 1 and 2

Table 3. Numerical results for Example 2 with different n and ¢ att = 1

a =15 a =125 a =175 Exact Solution

x  n=10 n=20 n=£0 n=10  n=50 n=10 n=50 u(x1)
0.1 0.40895817 0.40720504 0.40614181 0.40864415 0.40628597 0.40999119  0.40614032 0.40663123
0.2 0.45485343 0.45177388  0.44991249 0.45424043 0.45006669 0.45680611  0.44995190 0.44982777
0.3 0.50516789 0.50114666  0.49872304 0.50430596 0.49886598 0.50786205  0.49878619 0.49830245
04 0.56096238 0.55638669 0.55363223 0.55993940 0.55376386 0.56412999  0.55370517 0.55299132
0.5 0.62327837 0.61853079 0.61567384 0.62220364 0.61580062 0.62660031  0.61574779 0.61496571
0.6 0.69338696 0.68884735 0.68611469 0.69237620 0.68624375 0.69652791  0.68618364 0.68546782
0.7 0.77273043 0.76877289  0.76638792 0.77188962 0.76652521 0.77537889  0.76644488 0.76595148
08  0.86306665 0.86006075 0.85824447 0.86247729  0.85838943 0.86496883  0.85827832 0.85813033
0.9 0.96633572 0.96463816  0.96360914 0.96603881 0.96374173 0.96733276  0.96360589 0.96403586
1.0 1.08608825 1.08608825  1.08608825 1.08608825 1.08608825 1.08608825  1.08608825 1.08608825
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