CONFORMAL VECTOR FIELDS ON TANGENT BUNDLE
WITH A SPECIAL LIFT FINSLER METRIC

E. PEYGHAN\textsuperscript{1**, A. RAZAVI\textsuperscript{2 AND A. HEYDARI3}}

1Department of Mathematics, Faculty of Science, University of Arak, Arak, I. R. of Iran
2Department of Mathematics and Computer Science, Amirkabir University, Tehran, I. R. of Iran
3Faculty of Science, Tarbiatmodares University, Tehran, I. R. of Iran
Emails: e-peyghan@araku.ac.ir, arazavi@aut.ac.ir, aheydari@modares.ac.ir

Abstract – On a Finsler manifold, we define conformal vector fields and their complete lifts and prove that in certain conditions they are homothetic.

Keywords – Conformal vector field, complete lift, finsler manifold, lift metric

1. PRELIMINARIES

Let \((M, g)\) be a Riemannian manifold, a vector field \(V\) on \(M\) is called a conformal vector field if its local 1-parameter group of transformations is a local conformal transformation. It is well known that \(V\) is a conformal vector field on \(M\) if and only if there is a scalar function \(\lambda\) on \(M\) such that \(L_{V} g = 2\lambda g\). When \(\lambda\) is a constant, \(V\) is called homothetic, especially when \(\lambda = 0\), \(V\) is a killing vector field or an infinitesimal isometry \([1]\).

On a Finsler manifold \((M, F)\), let \(V\) be a vector field with the complete lift \(V^c\), then \(V\) is called conformal vector field if there is a scalar function \(\rho\) on \(TM\) such that \(L_{V^c} g = 2\rho g\), where \(g = (g_{ij})\) is the corresponding fundamental Finsler tensor defined by \(g_{ij}(x,y) = \frac{1}{2}F^2_{ij}(x,y)\).

Let \(TM\) be the tangent space with a canonical coordinate system \((x^{i}, y^{i})\), then the vertical tangent bundle of \(TM_0 = TM \setminus \{0\}\) is defined by

\[VTM = \text{span}\{\frac{\partial}{\partial y^1}, \ldots, \frac{\partial}{\partial y^n}\}. \]

A non-linear connection on \(TM_0\) is a complementary distribution \(HTM\) defined by

\[HTM = \text{span}\{\frac{\delta}{\delta x^1}, \ldots, \frac{\delta}{\delta x^n}\}, \]

where \(\frac{\delta}{\delta x^i} = \frac{\partial}{\partial x^i} - N_i^j \frac{\partial}{\partial y^j}\), and \(N_i^j\) are the connection coefficients. \(HTM\) is a vector bundle completely determined by the smooth functions \(N_i^j(x,y)\) on \(TM\) \([2, 3]\). Moreover, we have

\[TTM_0 = VTM \oplus HTM \]
Let ∇ be a linear connection on VTM, then (HTM, ∇) is called a Finsler connection on M. Indeed, a Finsler connection is a triad (N, F, C) where $N(N_{ij}^k)$ is a nonlinear, $F(F_{ij}^k)$ is the horizontal part and $C(C_{ij}^k)$ is the vertical part of this connection. Now let (M, F) be Finsler manifold then a Finsler connection is called a metric Finsler connection if g is parallel with respect to ∇. According to the Miron framework this means g is both horizontally and vertically a metric [4, 5, 6]. The Cartan connection is a metric Finsler connection for which the deflection, horizontal, and vertical torsion tensor fields vanish.

The curvature tensor of a metric Finsler connection is defined by

$$R(X, Y) = [\nabla_X, \nabla_Y] - \nabla_{[X, Y]}$$

where $X, Y \in \mathcal{X}(TM)$.

They are called horizontal or vertical according to the choice of X and Y in HTM or VTM. Then we have [5]

$$R^h_{kji} = \delta_i F^h_{kj} - \delta_j F^h_{ki} + F^m_{kij} F^h_{mi} - F^m_{kij} F^h_{mi} + C^h_{km} R^m_{ji},$$

$$R^h_{ij} = \delta_j N^h_i - \delta_i N^h_j,$$

where we have put $\partial_i = \partial / \partial x_i$, $\partial_j = \partial / \partial y_j$, $\partial_i = \partial - N^m_i \partial_m$. When ∇ is a Cartan connection then $N^h_i = y^m F^h_{mi}$.

Proposition 1. [4] Let M be an n-dimensional Finsler manifold with a Cartan connection, then we have the following equations:

1. $F^h_{ij} = \frac{1}{2} g^{hu} (\delta_i g_{mj} + \delta_j g_{im} - \delta_m g_{ij});$

2. $C^h_{ik} = \frac{1}{2} \partial_k g_{ij}$ where $C^h_{ik} = C^m_{ik} g_{mj};$

3. $y^m C_{mj} = 0;$

4. $R^h_{ij} = y^m R^h_{mij}.$

The Cartan horizontal and vertical covariant derivative of a tensor field of type $(1,2)$ are locally as follows:

$$\nabla^h T^h_{kij} := T^h_{kij} + F^h_{kij} T^m_{ji} - F^m_{kij} T^h_{ji} - F^m_{kij} T^h_{ji};$$

$$\nabla^h T^h_{kij} := T^h_{kij} + C^h_{mij} T^m_{ji} - C^m_{mij} T^h_{ji} - C^m_{mij} T^h_{ji}.$$

2. LIFT METRICS AND CONFORMAL VECTOR FIELDS

a) Complete Lift Vector Fields and Lie Derivative

Let $V = v^i \partial_i$ be a vector field on M. Then V induces an infinitesimal point transformation on M. This is naturally extended to a point transformation of the tangent bundle TM which is called extended point transformation. Let V be a vector field on M and $\{\varphi_t\}$ the local 1-parameter group of M generated by V. Let $\tilde{\varphi}_t$ be the extended point transformation of φ_t, then $\{\tilde{\varphi}_t\}$ induces a vector field V^C on TM which is called the complete lift of V [7, 8].

It can be shown that the extended point transformation is a transformation induced by the complete lift vector field of V, $V^C = v^i \partial_i + y^i \nabla_j v^i \partial_j$ with respect to the decomposition (1), where ∇ is a linear connection.
The Lie derivation of an arbitrary tensor, T_i^k, is given locally by [9]:

$$L_\nu T_i^k = v^a \nabla_a T_i^k + v^a \nabla_a y^b \nabla_b T_i^k - T_i^a \nabla_a y^k + T_a^k \nabla_v y^a$$

or equivalently,

$$L_\nu T_i^k = v^a \partial_a T_i^k + y^a \partial_\nu y^b \partial_{\nu} T_i^k - T_i^a \partial_\nu y^k + T_a^k \partial_\nu y^a.$$

So we have

$$L_\nu y^i = v^a \partial_a y^i + y^a \partial_\nu y^b \partial_{\nu} y^i - y^a \partial_\nu y^i = y^a \partial_a y^i - y^a \partial_\nu y^i = 0,$$

(3)

$$L_\nu g_{ij} = v^a \partial_a g_{ij} + y^a \partial_\nu g_{ij} \partial_{\nu} g_{ij} + g_{ai} \partial_\nu y^a + g_{ai} \partial_\nu y^a.$$

(4)

where ∇ is a linear connection.

In Finsler geometry, L_ν is replaced by L_{ν}, where ν^i is the lift of V. We also have this interchanging formula between Cartan covariant derivatives and Lie derivatives.

$$\nabla_k L_{\nu} g_{ij} - L_{\nu} \nabla_k g_{ij} = g_{ai} L_{\nu} F_{i,k}^a + g_{ai} L_{\nu} F_{j,k}^a.$$

(5)

b) A Lift Metric on Tangent Bundle

V. Oproiu introduced a family of Riemannian metrics on the tangent space of Riemannian manifolds and considered locally symmetric, Kählerian and anti-Hermitian conditions with these metrics [10-12]. Then Abbasi-Sarih proved in [13] that the Oproiu metrics form a particular subclass of the so-called g-natural metrics on the tangent space [14, 15]. Also in [16], Boeckx-Vanhecke obtained an almost contact metric on the unit tangent space.

In this section we consider a new Riemannian metric on the tangent space, and in the next section obtain some conditions which reduce the conformal vector fields to be homothetic.

Let (M, F) be a Finsler manifold, define a tensor field G on TM by

$$G(x, y) = \alpha h_{ij}(x, y) dx^i dx^j + 2\beta h_{ij}(x, y) dx^i \delta y^j + \gamma h_{ij}(x, y) \delta y^i \delta y^j$$

where α, β and γ are real numbers and $h_{ij}(x, y)$ are components of a generalized Lagrange metric [6, 17]. It is clear that G is nonsingular if $\alpha \gamma - \beta^2 \neq 0$ and positive definite if $\alpha \gamma - \beta^2 > 0$, defining, respectively, a pseudo-Riemannian or Riemannian lift metrics on $T(M)$.

We are going to consider the metric G with $h_{ij}(x, y)$ of the following special deformation of $g_{ij}(x)$

$$h_{ij}(x, y) = a(F^2) g_{ij}(x, y),$$

where $y^i = g_{ij}(x, y) y^j$ and $a : \text{Im}(F^2) \subseteq R_+ \rightarrow R_+$ with $a > 0$. For shortness we set $g_1 = h_{ij} dx^i dx^j$, $g_2 = 2h_{ij} dx^i \delta y^j$ and $g_3 = h_{ij} \delta y^i \delta y^j$, therefore $G = \alpha g_1 + \beta g_2 + \gamma g_3$.

3. MAIN RESULTS

Analogous to the Riemannian geometry, by straightforward calculation we have the following results in Finsler geometry [18, 19].

Lemma 1. Let (M, F) be a Finsler manifold with Cartan connection, then we have

1. $[\delta_i, \delta_j] = R_{ij}^{\ k} \partial_k$;
2. $[\delta_i, \delta_j] = \partial_j N_{ij} \partial_k$;

Winter 2008
Lemma 2. Let \((M,F) \) be a Finsler manifold with Cartan connection, then we have
\[
\begin{align*}
(1) & \quad L_{v^i} \partial_{v^j} = -\partial_y v^h \delta_y^i - L_{v^i} \partial_y N^h \delta_y^j; \\
(2) & \quad L_{v^i} \partial_v = -\partial_y v^h \partial_v; \\
(3) & \quad L_{v^i} dx^h = \partial_m v^h dx^m; \\
(4) & \quad L_{v^i} \delta y^h = L_{v^i} N^h \partial_m + \partial_m v^h \delta y^m.
\end{align*}
\]

Proof: First we give the proof of part (2). By a simple calculation, we have:
\[
L_{v^i} \partial_v = [v^c, \partial_v] = [v^b \delta_y^h + y^m v^h \mid_m \partial_v, \partial_v] = v^b \partial_y (v^h \delta_y^h) - y^m v^h \mid_m \partial_y + y^m v^h \mid_m \partial_v - \partial_y (y^m v^h \mid_m \partial_v) = \partial_y (y^m v^h \mid_m \partial_v) = \partial_v v^h \partial_v.
\]
The proof of part (1) is similar to (2).

Since \((dx^h, \delta y^h) \) is the dual basis of \((\delta_y, \partial_v) \), if we put
\[
L_{v^i} \delta y^h = \alpha^h_m \partial_m + \beta^h_m \delta y^m,
\]
then we have
\[
0 = L_{v^i} (\delta y^h (\delta_y^j)) = (L_{v^i} \delta y^h) \delta_y^j + \delta y^h (L_{v^i} \delta_y^j) = \alpha^h_m - L_{v^i} N^h_i,
\]
and
\[
0 = L_{v^i} (\delta y^h (\delta_v)) = (L_{v^i} \delta y^h) \delta_v + \delta y^h (L_{v^i} \delta_v) = \beta^h_i - \delta_v v^h.
\]
Thus we get (4). In the same way as the proof of part (4), we can prove (3).

Lemma 3. Let \((M,g) \) be a Finsler manifold with Cartan connection, then we have
\[
\begin{align*}
(1) & \quad L_{v^i} g_{ij} = a(F^2)(2\varphi g_{ij} + L_{v^i} g_{ij})dx^i dx^j; \\
(2) & \quad L_{v^i} g_{ij} = 2a(F^2)g_{ij} + 2a(F^2)(2\varphi g_{ij} + L_{v^i} g_{ij})\delta y^i \delta y^j; \\
(3) & \quad L_{v^i} g_{ij} = 2a(F^2)g_{ij} + (2\varphi g_{ij} + L_{v^i} g_{ij})\delta y^i \delta y^j.
\end{align*}
\]
where \(\varphi = y^m v^h \mid_m \frac{a(F^2)}{a(F^2)}\).

Proof: From the above lemma, we get
\[
L_{v^i} g_{ij} = L_{v^i} (h_{ij} \delta y^i \delta y^j) = V^c (a(F^2)g_{ij})dx^i dx^j + 2a(F^2)g_{ij} (L_{v^i} dx^i) dx^j = (v^b \delta_y^h \mid_m \partial_y) a(F^2)g_{ij} + (v^b \delta_y^h \mid_m \partial_v) a(F^2)
\]
\[
+ 2a(F^2)g_{ij} (\partial_y \delta y^i \partial y^j) dx^j = 2a(F^2) \varphi g_{ij} dx^i dx^j + a(F^2) L_{v^i} g_{ij} dx^i dx^j.
\]
Thus we have (1), (2) and (3) are easily proof in the same way as the proof of (1).

Definition 1. Let X be a conformal vector field on TM with the associated function ρ. X is called quasi-inessential vector field if $\rho - \varphi$ is a function of (x^i), namely there exists a function Ω of (x^i) such that $\rho = \Omega + \varphi$. If Ω is constant, then X is called quasi-homothetic vector field. Moreover, if $\Omega = 0$ then X is called quasi-isometry vector field on TM.

Remark: These classes of vector fields contain the classes of inessential, homothetic and isometry vector fields as special cases, respectively (for $\varphi = 0$). Hence, the forthcoming results hold for inessential, homothetic and isometry vector fields.

Theorem 1. Let (M,F) be a C^∞ connected Finsler manifold, TM its tangent bundle and G the Riemannian (or pseudo-Riemannian) metric on TM derived from g. Then every complete lift conformal vector field on TM is quasi-homothetic.

Proof: Let V be a vector field on M, V^e the complete lift vector field of V which is conformal, and let G be a pseudo-Riemannian metric on TM derived from g. We have by definition $L_v G = 2\rho G$. The Lie derivative of G gives

$$L_v G = a a (F^2) (2\varphi g_{ij} + L_v g_{ij}) dx^i dx^j + 2\beta a (F^2) (2\varphi g_{ij} + L_v g_{ij}) dx^i \delta y^j$$

$$+ 2\beta a (F^2) g_{ij} L_v N^a_{ij} dx^i dx^j + \gamma a (F^2) (2\varphi g_{ij} + L_v g_{ij}) \delta y^i \delta y^j$$

$$+ \gamma a (F^2) g_{ij} L_v N^a_{ij} \delta y^i \delta y^j = 0.$$ \hspace{1cm} (6)

So we have

$$L_v G = a (F^2) [\alpha (2\varphi g_{ij} + L_v g_{ij}) + 2\beta g_{ij} (L_v N^a_{ij})] dx^i dx^j$$

$$+ \alpha (F^2) [2\beta (2\varphi g_{ij} + L_v g_{ij}) + 2\gamma g_{ij} (L_v N^a_{ij})] dx^i \delta y^j$$

$$+ \gamma a (F^2) (2\varphi g_{ij} + L_v g_{ij}) \delta y^i \delta y^j = 2\rho G.$$ \hspace{1cm} (7)

Comparing with the definition of G, we find

$$\alpha L_v g_{ij} + \beta (g_{ij} L_v N^a_{ij} + g_{ij} L_v N^a_{ij}) = 2\alpha \Omega g_{ij};$$ \hspace{1cm} (7)

$$\beta L_v g_{ij} + \gamma g_{ij} L_v N^a_{ij} = 2\beta \Omega g_{ij};$$ \hspace{1cm} (8)

$$\gamma L_v g_{ij} = 2\gamma \Omega g_{ij}.$$ \hspace{1cm} (9)

Where $\Omega = \rho - \varphi$.

I) If $\gamma \neq 0$, then from (9) we have

$$L_v g_{ij} = 2\Omega g_{ij}$$

and from (8) we have

$$L_v N^a_{ij} = 0.$$ \hspace{1cm} (10)

Using this and $N^a_{ij} = y^m F^h_{mi}$, we get
\[0 = L_{\nu} N_i^h = L_{\nu} \left(y^m F_m^i \right) = y^m L_{\nu} F_m^i, \quad (10)\]

where the last equality follows from equation (3).

II) If \(\gamma = 0 \), since \(\alpha \gamma - \beta^2 \neq 0 \) we have \(\beta \neq 0 \). From (8) we get

\[L_{\nu} g_{ij} = 2\Omega g_{ij}\]

and from (7) we have

\[g_{ai} L_{\nu} N_i^a + g_{aj} L_{\nu} N_i^a = 0.\]

Using this, equation (3) and \(N_i^h = y^m F_m^i \), we have

\[y^m (g_{ai} L_{\nu} F_m^i + g_{aj} L_{\nu} F_m^a) = 0. \quad (11)\]

In each case I and II we have

\[L_{\nu} g_{ij} = 2\Omega g_{ij} \quad (12)\]

or from equation (4)

\[v^a \partial_a g_{ij} + g_{ai} \partial_j v^a + g_{aj} \partial_i v^a + y^b \partial_j v^b \partial_i \Omega = 2\Omega g_{ij}.\]

Applying \(\partial_\kappa \) to both sides of the above equation, we find that

\[2v^a \partial_\kappa C_{ijk} + 2C_{aqk} \partial_j v^a + 2C_{iak} \partial_j v^a + 2y^a \partial_i v^b \partial_\kappa C_{ijk} = 2g_{ij} \partial_\kappa \Omega + 4\Omega C_{ijk}.\]

By using \(y^i C_{ijk} = 0 \), we obtain \(\partial_\kappa \Omega = 0 \). Therefore \(\Omega \) is a function of \(x \) alone. From (5) we have

\[y^k \left(\nabla_k L_{\nu} g_{ij} - L_{\nu} \nabla_k g_{ij} \right) = y^k \left(g_{ai} L_{\nu} F_i^a + g_{aj} L_{\nu} F_j^a \right).\]

By using (10), (11) and (12) in each case I and II we find that

\[y^k \nabla_k \Omega = 0.\]

Since \(\Omega \) is a function of \(x \) alone, we obtain \(\partial_\nu \Omega = 0 \). This, together with the connectedness of \(M \), shows that \(\Omega \) is constant.

Note: In a special case when \(a'(F^2) = 0 \) e.g. \(a(t) = (t - F^2)^2 + 1 \) follows from lemma 3, that \(\phi = 0 \) and hence \(L_{\nu} G = 2\rho G \), where \(\rho \) depends on \(x \) only. Therefore we have:

Corollary 1. Let \((M,F)\) be a \(C^\infty\) connected Finsler manifold, \(TM\) its tangent bundle and \(G\) the Riemannian (or pseudo-Riemannian) metric on \(TM\) derived from \(g\) with \(a'(F^2) = 0\). Then every complete lift conformal vector field on \(TM\) is homothetic.

REFERENCES

