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Abstract – Here, the concept of electric capacity on Finsler spaces is introduced and the fundamental 
conformal invariant property is proved, i.e. the capacity of a compact set on a connected non-compact Finsler 
manifold is conformal invariant. This work enables mathematicians and theoretical physicists to become more 
familiar with the global Finsler geometry and one of its new applications. 
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1. INTRODUCTION 
 
Finsler space is the most natural and advanced generalization of Euclidean space, which has many 
applications in theoretical physics. The physical notion of capacity is the electrical capacity of a 2 -
dimensional conducting surface, which is defined as the ratio of a given positive charge on the conductor 
to the value of the potential on its surface.  

The capacity of a set as a mathematical concept was introduced first by N. Wiener in 1924 and was 
subsequently developed by O. Forstman [1], C. J. de La Vallee Poussin, and several other physicists and 
mathematicians in connection with the potential theory.  

The concept of conformal capacity was introduced by Loewner [2] and has been extensively 
developed for n\  [3-6]. In particular, it was used by G.D. Mostow to prove his famous theorem on the 
rigidity of hyperbolic spaces [5]. The concept of capacity on Riemannian geometry was introduced by J. 
Ferrand [7] and developed in the joint work’s of M. Vuorinan and G.J. Martin [8] and [9].  

Here, we introduce the concept of capacity for Finsler spaces and prove that, it depends only on the 
conformal structure of ( )M g, , more precisely: 
 
Theorem: Let ( )M g,  be a connected non-compact Finsler manifold, then the capacity of a compact set 
on M  is a conformal invariant.  
 

1. PRELIMINARIES 
 
1.1. Finsler metric 
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Let M  be an n-dimensional C∞  manifold. For a point x M∈ , denote by xT M  the tangent space of M  
at x . The tangent bundle TM  on M  is the union of tangent spaces xT M . We will denote the elements 
of TM by ( )x y,  where xy T M∈ . Let 0 {0}TM TM= .  The natural projection TM Mπ : →  is given 
by ( )x y xπ , := . Throughout this paper we use the Einstein summation convention for the expressions 
with repeated indices. That is, wherever an index appears twice, once as a subscript, and once as a 
superscript, then that term is summed over all values of that index.  

A Finsler structure on a manifold M  is a function 0 [0 )F TM: → ,∞  with the following properties: 
(i) F  is C∞  on 0TM . (ii) F  is positively 1-homogeneous on the fibers of tangent bundle TM , i.e. 

0 ( ) ( )F x y F x yλ λ λ∀ > , = , .  (iii) The Hessian of 2F  with elements 21
2( ) [ ( )] i jij y y

g x y F x y, := ,  is 
positive definite on 0TM . We recall that, ijg  is a homogeneous tensor of degree zero in y  and 

( ) ( )i j
ijg x y y y g y y, = , , where ( )g ,  is the local scalar product on any point of 0TM . Then the pair 

( )M g,  is called a Finsler manifold. The Finsler structure F  is Riemannian if ( )ijg x y,  are independent 
of 0y ≠ .  
 
1.2. Notations on conformal geometry of Finsler manifolds 
 

Let’s consider two n -dimensional Finsler manifolds ( )M g,  and ( )M g′ ′,  with Finsler structures 
F  and F ′  and with line elements ( )x y,  and ( )x y′ ′,  respectively. Throughout this paper we shall 
assume that coordinate systems on ( )M g,  and ( )M g′ ′,  have been chosen so that ii xx =′  and i iyy′ =  
holds for all i , unless a contrary assumption is explicitly made. Using this assumption these manifolds can 
be denoted simply by M  and M ′ , respectively. Let u  and v  be two tangent vectors at a point x  of a 
Finsler manifold ( )M g, . The angle θ  of v  with respect to u  is defined by  
 

( )
cos

( ) ( )

i j
ij

i j i j
ij ij

g x u u v

g x u u u g x u v v
θ

,
= .

, ,
 

 
Clearly this notion of angle is not symmetric. A diffeomorphism f M M ′: →  between two Finsler 

manifolds is called conformal if for each p M∈ , ( ) pf∗  preserves the angles of any tangent vector, with 
respect to any y  in M . In this case the two Finsler manifolds are called conformal equivalent or simply 
conformal. If M M ′=  then f  is called a conformal transformation or conformal automorphism. It can 
be easily checked that a diffeomorphism is conformal if and only if 2f g e gσ∗ ′ =  for some function 

M IRσ : →  (this result is due to Knebelman [10]. In fact, the sufficient condition implies that the 
function ( )x yσ ,  be independent of direction y , or equivalently 0iyσ∂ /∂ = ). The diffeomorphism f  is 
called an isometry if f g g∗ ′ = . Two Finsler structures F  and F ′  are called conformal if 

( ) ( )F x y e F x yσ′ , = ,  or equivalently, 2 ( )xg e gσ′ = .  Locally we have 2 ( )( ) ( )x
ijij x y e g x yg σ′ , = , , and 

2 ( )( ) ( )ij x ijx y e g x yg σ−′ , = , .   
 
1.3. Some vector bundles and their properties 
 

Let TM Mπ : ⎯→  be the natural projection from TM  to M . The pull-back tangent space TMπ ∗  
is defined by 0{( ) }x xTM x y v y T M v T Mπ ∗ := , , | ∈ , ∈ .  The pull-back cotangent space  T Mπ ∗ ∗  is the 
dual of TMπ ∗ . Both TMπ ∗  and T Mπ ∗ ∗  are n-dimensional vector spaces over 0TM  [11, 12]. We 
denote by xS M  the set consisting of all rays [ ] { 0}y yλ λ:= | > ,  where 0xy T M∈ . Let 

xx M
SM S M

∈
= ,∪  then SM  has a natural (2 1)n −  dimensional manifold structure and the total space 

of a fiber bundle, called Sphere bundle over M . We denote the elements of SM  by ( [ ])x y,  where 
0xy T M∈ . Let p SM M: ⎯→  denote the natural projection from SM  to M . The pull-back tangent 

space p TM∗  is defined by 0{( [ ] ) }x xp TM x y v y T M v T M∗ := , , | ∈ , ∈ .  The pull-back cotangent space 
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p T M∗ ∗  is the dual of p TM∗ . Both p TM∗  and p T M∗ ∗  are total spaces of vector bundles over SM . 
We use the following Lemma for replacing the C∞  functions on 0TM  by those on SM .  
 
Lemma 1.1. [13] Let η  be the function 0TM SMη : ⎯→ ,  where ( ) ( [ ])x y x yη , = ,  and 0( )f C TM∞∈ . 
Then there exists a function ( )g C SM∞∈  satisfying g fη∗ =  if and only if ( ) ( )f x y f x yλ, = , ,  where 

0 0xy T M λ∈ , >  and η∗  is the pull-back of η .  
Let ( )f C M∞∈ , the vertical lift of f  denoted by 0( )Vf C TM∞∈ , be defined by 

Vf TM IR: ⎯→ , where ( ) ( ) ( )Vf x y f x y f xπ, := , = .D  Vf  is independent of y  and from Lemma 
1.1 there is a function g  on ( )C SM∞  related to Vf  by means of Vg fη∗ = . In the sequel g  is denoted 
by Vf  for simplicity. It is well known that, if the differentiable manifold M  is compact then the Sphere 
bundle SM  is compact, and also it is orientable whether M  is orientable or not [14, 15]).  
 
1.4. Nonlinear connections 
 
1.4.1. Nonlinear connection on the tangent bundle TM  
Consider TTM TMπ∗ : ⎯→  and put { ( ) 0}v vker z TTM z v TMπ π∗ ∗= ∈ | = , ∀ ∈ ,  then the vertical 
vector bundle on M  is defined by 

v TM

vVTM kerπ
∈

∗= .∪  A non-linear connection or a horizontal 
distribution on TM  is a complementary distribution HTM  for VTM  on TTM . These functions are 
called coefficients of the non-linear connection and will be noted in the sequel by j

iN . It is clear that 
HTM  is a vector sub-bundle of TTM  called horizontal vector bundle. Therefore we have the 
decomposition TTM VTM HTM= ⊕ .  

Using the induced coordinates ( )i ix y,  on TM , where ix  and iy  are called, respectively, position 
and direction of a point on TM , we have the local field of frames { }

i ix y
∂ ∂
∂ ∂,  on TTM . Let { }i idx dy,  be 

the dual of { }i ix y
∂ ∂
∂ ∂
, . It is well known that we can choose a local field of frames { }i iyx

δ
δ

∂
∂,  adapted to the 

above decomposition, i.e. ( )ix
HTMδ

δ
χ∈  and ( )

iy VTMχ∂
∂ ∈ . They are sections of horizontal and 

vertical bundles, HTM  and VTM , defined by i i j

j
ix yx

Nδ
δ

∂ ∂
∂ ∂= − , where ( )j

iN x y,  are the coefficients of 
non linear 1

2 ( )sj jk ks
k s j

g g gi is
jk x x x

gγ ∂ ∂ ∂

∂ ∂ ∂
:= − +  and 1

2
ij
k

g
ijk y

C ∂

∂
= .  

 
1.4.2. Nonlinear connections on the sphere bundle SM  
Using the coefficients of non linear connection on TM , one can define a non linear connection on SM  
by using the objects which are invariant under positive re-scaling y yλ6 . Our preference for remaining 
on SM  forces us to work with 

i
jN i k i k r s

jk jk rsF l C l lγ γ:= − ,  where 
iyi

Fl = .  We also prefer to work with 
the local field of frames { }i jx y

Fδ
δ

∂
∂

,  and { }
jyi

Fdx δ, , which are invariant under the positive re-scaling of 
y , and therefore, live over SM . They can also be used as a local field of frames over tangent bundle 
p TM∗  and cotangent bundle p T M∗ ∗  respectively. 

 
1.5. A Riemannian metric on SM  
 

It turns out that the manifold 0TM  has a natural Riemannian metric, known in the literature as Sasaki 
metric [12, 16]); i ( ) ( )

i jy yi j
ij ij F Fg g x y dx dx g x y δ δ= , ⊗ + , ⊗ ,  where ( )ijg x y,  is the Hessian of Finsler 

structure 2F . They are functions on 0TM  and invariant under positive re-scaling of y , therefore they can 
be considered as functions on SM . With respect to this metric, the horizontal subspace spanned by jx

δ
δ

 is 
orthogonal to the vertical subspace spanned by iy

F ∂
∂

. The metric ig  is invariant under the positive re-
scaling of y  and can be considered as a Riemannian metric on SM . 
 
1.6. Hilbert form 
 

Consider the pull-back vector bundle p TM∗  over SM . The pull-back tangent bundle p TM∗  has a 
canonical section l  defined by ( [ ]) ( )( [ ] )y

x y F x yl x y, ,= , , .  We use the local coordinate system ( )i ix y,  for 
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SM , where iy  are homogeneous coordinates up to a positive factor. Let { }i∂  be a natural local field of 
frames for p TM∗ , where ( [ ] )ii x

x y ∂
∂

∂ := , , . The natural dual co-frame for p T M∗ ∗  is noted by{ }idx . The 
Finsler structure ( )F x y,  induces a canonical 1-form on SM  defined by i

il dxω := ,  where j
i ijl g l=  and 

ω  is called the Hilbert form of F . Using i j i jij y y y y
g FF F F= +  and 0i

F
x

δ
δ

= , with a straightforward 
calculation we get  

 

                                                               ( )
j

i
ij i j

yd g l l dx
F
δω = − − ∧ .                                                       (1) 

 
1.7. Gradient vector field 
 

For a Riemannian manifold i( )SM g, , the gradient vector field of a function ( )f C SM∞∈  is given 
by i i i i( ) ( ) ( )g f X df X X SMχ∇ , = ,∀ ∈ .  Using the local coordinate system ( [ ])i ix y,  for SM , the vector 
field i ( )X SMχ∈  is given by i ( ) ( )i j

i i
x y

X X x y Y x y Fδ
δ

∂
∂

= , + ,  where ( )iX x y,  and ( )iY x y,  are C∞  
functions on SM . A simple calculation shows that locally  
 

2ij ij
i j i j

f ff g F g
x x y y

δ δ
δ δ

∂ ∂
∇ = + .

∂ ∂
 

 
The norm of f∇  with respect to the Riemannian metric ig  is given by  

 

                                            i2 2| | ( ) ij ij
i j i j

f f f ff g f f g F g
x x y y

δ δ
δ δ

∂ ∂
∇ = ∇ ,∇ = + .

∂ ∂
                                   (2) 

 
2. EXTENSION OF SOME DEFINITIONS TO FINSLER MANIFOLDS 

 
In what follows, ( )M g,  denotes a connected Finsler manifold of class 1C  with dimension 2n ≥ . Let 

i( )SM g,  be its Riemannian Sphere bundle.  
We consider the volume element ( )gη  on SM  defined as follows:  

 

                                                            1( 1)( ) ( )
( 1)

N
ng d

n
η ω ω −−

:= ∧ ,
− !

                                                         (3) 

 
where ( 1)

2
n nN −=  and ω  is the Hilbert form of F (This volume element was used for the first time in 

Finsler geometry by Akbar-Zadeh in his thesis [11] and [17]). Let ( )C M  be the linear space of 
continuous real valued functions on M , ( )u C M∈  and Vu  its vertical lift on SM . For M , compact or 
not, we denote by ( )H M  the set of all functions in ( )C M , admitting a generalized nL -integrable 
gradient Vu∇  satisfying  
 

( ) | ( )| V n

SM
I u M u gη, = ∇ < ∞.∫  

 
If M  is non-compact let us denote by 0 ( )H M  the subspace of functions ( )u H M∈  for which the 
vertical lift Vu  has a compact support in SM . A relatively compact subset is a subset whose closure is 
compact. A function ( )u C M∈  will be called monotone if for any relatively compact domain D  of M   
 

sup ( ) sup ( ) inf ( ) inf ( )
x D x Dx D x D

u x u x u x u x
∈∂ ∈∈∂ ∈

= ; = .  

 
We denote by ( )H M∗  the set of monotone functions ( )u H M∈ .  
We define notion of capacity as follows:  
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Definition 2.1. Capacity of a compact subset C  of a non-compact Finsler manifold M  is defined by  
 

( ) inf ( )
M u

Cap C I u M:= , ,  
 
where the infimum is taken over the functions 0 ( )u H M∈  with 1u =  on C  and 0 ( ) 1u x≤ ≤  for all x , 
these functions are said to be admissible for C .  
The non-compactness condition of M is a necessary condition. In fact, if M is compact, then by putting 

1u =  in 0H M  we have ( , ) 0I u M = , therefore the capacity of all subsets is zero and there is nothing to 
say. 

A relative continuum is a closed subset C  of M  such that { }C ∪ ∞  is connected in Alexandrov’s 
compactification { }M M= ∪ ∞ . To avoid ambiguities, the connected closed sets of M  that are not 
reduced to one point will be called continua. In what follows we want to associate conformal invariant 
function, which is determined entirely by the conformal structure of manifold M , at every double point of 
M .  
 
Definition 2.2. Let ( )M g,  be a Finsler manifold. For all 1 2( )x x,  in 2M M M:= ×  we set  
 

1 2
1 2 ( )

( ) inf ( )
M MC x x

x x Cap C
α

µ
∈ ,

, = ,  
 
where 1 2( )x xα ,  is the set of all compact continua subsets of M  containing 1x  and 2x .  
 

3. CONFORMAL PROPERTY OF CAPACITY 
 
Lemma 3.1. Let ( )M g,  and ( )M g′ ′,  be two conformal related Finsler manifolds, then there exist an 
orientation preserving diffeomorphism between their sphere bundles.  
 
Proof: Let ( ) ( )f M g M g′ ′: , ⎯→ ,  be a diffeomorphism between two Finsler manifolds. We define a 
mapping h  between their sphere bundles as follows h SM SM ′: ⎯→ ,  where ( [ ]) ( ( ) [ ( )])h x y f x f y∗, = , , 
and f∗  is the differential map of f . Since f∗  is a linear map, h  is well defined. If f  is conformal then 
f g gλ∗ ′ = , where λ  is a positive real valued function on M  and for components of Finsler metrics g  

and g′  defined on TM  and TM ′  we have ( )i j
ijg f g f d dg x xλ ∗ ∗′ ′= = ′ ′ , by definition 

( ) ( )( ) ( ) i ji j
ij ijf f d f d f dx dxg gx x∗ ∗ ∗ ∗

∗ ∗′ ′=′ ′ , and therefore ( ) ijijf gg λ∗
∗ ′ =  or equivalently, ijijh gg λ∗ ′ = . 

Let ω′  be the Hilbert form related to the Finsler metric g′ . By definition  
 

j j
i i

ij ij m n
mn

y yd dg gx xF g y y
ω

′ ′′ ′ ′= = .′ ′
′ ′ ′

 

 
Therefore, 

 

                                           
( )( ) ( )

( )

j
i

ij m n
mn

h yh h h dg x
h g y y

ω λω
∗

∗ ∗ ∗

∗

′′ ′= = .′
′ ′ ′

                                        (4) 

 
By applying h∗  to (1) we get by straight forward calculation  

 
                                                                         h d dω λ ω∗ ′ = .                                                                  (5) 
 
So if ( )gη  and ( )gη ′  denote the volume elements of SM  and SM ′  respectively, then from (3), (4) and 
(5) we get  
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( , )SM g  i( ', ')SM g
h

p  

( , )M g  ( ', ')M g

f

'p\
( )Vu fD

u fD u

V
u

                                                                   ( ( )) ( ) ( )nh g gη λ η∗ ′ = .                                                          (6) 
 

Therefore h  is an orientation preserving diffeomorphism. 
 
Lemma 3.2. Let f  be a diffeomorphism between Finsler manifolds ( )M g,  and ( )M g′ ′, , and h  a 
mapping between their sphere bundles with Sasaki metrics, ( )SM g, �  and ( )SM g′ ′, � . If 0 ( )u H M ′∈  then 
we have  
1. 2| | ( )

nV V

i j
ijV n u u

x x
u g δ δ

δ δ′ ′
′∇ = ,   

2. ( )V Vu f u h= ,D D   

3. ( )VV

i i
u fu

xx
h δδ

δ δ
∗

′
= .D   

Therefore, the following diagram is commutative: 
 
 
                                                       
  
 
 
 
 
 
 
 
 
 

 
Diagram 1. 

 
Proof: 
1. Since the vertical lift of 0 ( )u H M ′∈  is a function of position alone, 0V

i
u
y

∂
∂

= . Therefore the first 
assertion follows from (2).  

2. Let’s consider the projections p SM M: →  and p SM M′ ′ ′: → . The vertical lifts of u  and u fD , 
are by definition, ( [ ]) ( [ ]) ( )Vu x y u p x y u x′ ′ ′ ′ ′ ′, = , =D  and  

 
( ) ( [ ]) ( ) ( [ ]) ( )( )Vu f x y u f p x y u f x, = , = .D D D D  

 
From which we have 
 

( ) ( [ ]) ( )( )
( ( ) [ ( )]) ( ( [ ])) ( [ ])

V

V V V

u f x y u f x
u f x f x u h x y u h x y∗

, = =

, = , = , .

D D
D

 

 
This proves the assertion (2) . 
3. By definition of h∗  we have ( ) ( ) ( ),i i i

V V V
xx x

h u h h u u hδ δ δ
δ δ δ

∗ ∗ ∗
′ ′
. = . = . D  and from (2)  we get 

assertion (3) . 
Now we are in a position to prove the following theorem:  
 
Theorem 3.3. Let ( )M g,  be a connected non-compact Finsler manifold, then the capacity of a compact 
set on M  is a conformal invariant.  
 
Proof: We show that the notion of capacity depends only on the conformal structure of M , or 
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equivalently, for any conformal map f  from Finsler manifold ( )M g,  onto another Finsler manifold 
( )M g′ ′, , we have  
 

( ) ( ( ))
M M

Cap C Cap f C
′

= .  
 
Since SM  and SM ′  are two smooth, orientable manifolds with boundary, then for a smooth, orientation 
preserving diffeomorphism function h SM SM ′: ⎯→  defined in Lemma 3.1, clearly (by a classical 
result in differential Geometry, [18]) we have  
 

2 1n

SM SM
h SMω ω ω∗ −

′
′= , ∈Ω .∫ ∫  

 
So we get,  

 

                                     
( )

( ) | ( ) (| | ( ))| V n V n

S M SM
I u M u g h u gη η∗

′
′ ′ ′, = ∇ = ∇ .∫ ∫                                     (7) 

 
Using Lemma 3.2, a straightforward calculation shows that  

 
                                                          | | ( ) | ( ) |V n n V nh u u fλ∗ −∇ = ∇ .D                                                  (8) 
 
Using (6) in Lemma 3.1, and relations (7) and (8) we get  
 
                                           ( ) ( ) | ( ) ( )| V n

SM
I u M u f g I u f Mη′, = ∇ = , .∫ D D                                          (9) 

 
Let C  be a compact set in M , then we have  
 

0 0 ( )1 1
( ) inf ( ) ( ( )) inf ( )

M M
C f Cv H M v u H M u

Cap C I v M Cap f C I u M
′ ′∈ , | = ∈ , | =

′= , , = , .  

 
Put 
 

0{ ( ) 1}
C

A I v M v H M v= , | ∈ , | = ,  
 

( )0{ ( ) 1}
f C

B I u M u H M u′ ′= , | ∈ , | = .  
 
We first show that B A⊆ . For all ( )I u M B′, ∈ , we easily have the following assertions.  
• Since ( )Vsupport u  is compact in SM ′ , 1( ( )) ( )V Vh support u support u f− = D  is compact in SM  
and by definition 0 ( )u f H M∈ .D   
• ( ) 1

C
u f | =D  since ( ) 1

f Cu | = .   
• From (9) we have ( ) ( )I u f M I u M ′, = ,D .  
Therefore, ( )I u f M A, ∈D  and B A⊆ . By the same argument we have A B⊆ . Hence, 

( ) ( ( ))
M M

Cap C Cap f C
′

= .  
Theorem 3.3, implies that the function 

M
µ  is invariant under any conformal mapping. More precisely, if 

f  is a conformal mapping between Finsler manifolds ( )M g,  and ( )M g′ ′, , then for all 1 2x x M, ∈  we 
have  
 

1 2 1 2( ) ( ( ) ( ))
M M

x x f x f xµ µ
′

, = , ,  
 
In the Riemannian geometry this function is of general interest in the study of global conformal geometry, 
which can be the subject of further studies in Finsler geometry.  
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