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Abstract – The independent model used by Meyer and Schramm (here after M&S) for determining the age of 
elements (chemical evolution) is extended. Using new and extended definitions and including parameters 
ignored by M&S, the galactic evolution equations are solved to determine the total duration of 
nucleosynthesis,T. To be able to calculate the Tt  (mean age time for formation of elements to total duration 
of nucleosynthesis ratio), one event age, max

ij , and ),( jir  are determined using approximation relating
),( jir  to the former value r(i, j).  For Th/U pair, constraint on Tt  becomes 61.043.0  Tt  and 

the age of the galaxy is obtained as 12.5 23.0GalGyr T Gyr  , reducing the variation considerably 
compared to M&S formalism ( GyrTGyr Gal 1.287.8  ). The range of constraints for the age of the 
universe is shorter than the M&S and our modifications on the model have reduced the interval for galaxy age 
83% and close to being concordant with other available methods. 

 
Keywords – Nucleosynthesis, cosmochronology, age of universe, independent model, galaxy evolution, 
chronometric pairs, abundances 

 

1. INTRODUCTION 
 
The evolution of the universe, from our perspective, can be divided into four stages: 1. Big bang 
primordial nucleosynthesis leading to the formation of neutral atoms (p.n.~ 610 yr). 2. Condensation of 
galaxies and first generation stars (time interval≡δ~1.5±0.5 Gyr). 3. Nucleosynthesis in stars and 
supernovae leading to the formation of the present chemical elements (time interval T=0 to T=T+Δ). 
Finally, condensation of the solar system from the debris of earlier stars (time interval ≡ t ss =4.55 Gyr). 
Having sst from meteorite mass spectroscopy (comparison of abundance for daughter and mother 
radionuclides), and having Tt  from nuclear calculation, and calculating   from gravitational 
physics, the age for the universe can be approximated by (A u = p.n+δ+T+Δ+t ss ), of which p.n. is certainly 
very small compared to other terms and can be neglected [1]. Nucleocosmochronology employs a 
knowledge of abundance and production ratio of radioactive nuclides and of the chemical evolution of the 
galaxy to obtain information about the time scale over which the solar system elements were synthesized. 
There are several methods relevant to model starting from Rutherford (1929). He established a model to 
determine the synthesis of Uranium isotopes. In 1957 Burbridge and et al., suggested the chemical 
evolution of the galaxy based on cosmochronology. In 1960 Fowler and Hoyle suggested an exponentially 
decaying synthesis model for chronometric pairs like UU 238235 / and UTh 238232 / consisting of uniform 
and sudden synthesis. In 1964 Clyton used Os187187 Re/  chronometric pair which holds great promise for 
accurate determination of the galaxy’s age. Despite the considerable amount of work done on 
nucleochronology, many uncertainties in nuclear and meteoritic data preclude accurate conclusions for the 
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galaxy’s age. Furthermore, assumptions made for the model to galactic chemical evolution are also a 
source of error in age estimates for the galaxy. If a wrong model is chosen, many errors would emerge in 
age determination [2]. For this reason, in 1986 M & S turned to the independent cosmochronology model 
which was supposed by Schramm and Wasserburg in 1970 [3]. M&S obtained an upper limit on the 
galaxy’s age using an independent model. In this paper we revise the M&S procedure with some new 
definitions and using our extended model, it is shown that the calculated galaxy’s age range is reduced. 
 

2. BASIC EQUATION AND GALAXY EVOLUTION FRAMEWORK 
 

Suppose that in the interstellar medium of the galaxy, the abundance of materials going into the media are 
homogeneous, so the general equation governing the time evolution of the abundance N i  of nuclide i is, 

 

                                                    
        tNttNtP

dt

trdN
iiii

i  
,

                                                (1) 

 
where P i  is the number of nuclei produced per unit mass going into the stars (production rate) and )(t
is the amount of mass going into stars per unit time (star formation rate) [2], this factor is known from the 
astronomical observation of UB and radio wave radiation [4]. i  is the decay constant for nucleus i,  t
is a time dependent parameter representing the rate of movement of metals into and out of the interstellar 
medium for reasons other than radioactivity decay (e.g. loss into stellar remnants) [2, 5]. Mass loss rate 
 t  consists of at least two origins: first, the loss rate due to remnant formation which can be calculated 

in structure evolution models with various progenitor mass of main sequence stars, and second, the 
dynamical loss rate due to stellar and galactic wind which can be determined from the observed stellar 
metallicity distribution in a one-zone simple Galactic Chemical Evolution (GCE) model [4]. In a stellar 
structure, at the onset of the supernovae stage silicon burning or e-process (for equilibrium), rapid process 
and proton capture or the p-process also occur in supernovae and are responsible for heavy metal isotopes. 
Fe-group elements may also be synthesized by the e-process in Type I supernovae. Except for the 
production of Li7  in the Big Bang, the lighter metals like BandBeLi,  are not produced in any of the 
above processes. They are believed to be formed by the interactions of cosmic rays with interstellar gas 
and dust [6]. 

Equation (1) is a first order linear inhomogeneous differential equation. Solving this equation gives 
us abundance N i  of nuclide i at time T as a function of time t: 

 

                                                      ( ) ( )

0
( ) ( )i i

TT T t t
i iN T e P t e dt                                                         (2) 

 
where T is the time of the last event contributing to the formation of the elements going into the solar 
system. Δ is supposed to be the time interval between the last nucleosynthetic event and the solidification 
of the solid body in the solar system (the period of free decay for elements). We can have the abundance 

iN (T )   of nuclide i at time (T+Δ) by using Taylor expansion [2]: 
 

                                 i i i i
T- ( T ) T ( T ) t ( t )

i i i0
N (T ) P (T) e   P ( t )e dt                                   (3) 

 
where  T  is the metal variation at the interstellar medium during the nucleosynthesis interval and is 
defined as: 
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T
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                                                                 (4) 

 



Estimation of galaxy age by modified… 
 

Summer 2009                                                           Iranian Journal of Science & Technology, Trans. A, Volume 33, Number A3 

227

The abundance  TNi in equation (3) is dependent upon the effective nucleosynthesis rate  e . 
M&S defined  t , the normalized effective nucleosynthesis rate[2, 5], as 

 

                                                                                  
ve

t
T





 

                                                                            (5) 

 
where  , the average effective nucleosynthesis rate [2,4], is defined as: 
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                                                                   (6) 

 
From equation (5) instead of  e  we can use  tT   , therefore equation (3) becomes 
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Similar to M&S, we use Tinsley’s definition of the mean time for the formation of the elements [2, 

7], therefore: 
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By multiplying and dividing the second term in equation (7) to  tie , we have: 
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Using a similar definition made by M&S for i [2]: 
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where n  is the nth moment of  t  about t [2], therefore: 
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nT

n t t t dt .                                                         (11) 

 
Expanding equation (9) in moments of the normalized effective nucleosynthesis rate  t , we have : 

 
                                          .1)()( )()(
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iiieTPTPTN                                (12) 

 
Substituting )(t  in the first term of equation (12) by    etT  from equation (5), we have: 
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Using equation (13) for two different nuclides of i and j, their abundance ratio can be determined: 
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Taking the natural logarithm from equation (14), and using two new definitions for t and T as, 
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and 
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we have 
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Defining one event age max

ij [2, 5], as: 
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and for ji   , equation (17) reduces to: 
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Since i  is proportional to 

n
in  and n  is essentially proportional to nT , i  is proportional to

nn
i T . For long-lived chronometers (λT<< 1), equation (19) reduces to: 
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and T can be written as: 
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3. CONSTRAINTS ON MEAN LIFE-TIME FOR FORMATION OF ELEMENTS  

TO TOTAL DURATION OF NUCLEOSYNTHESIS RATIO 
 

In this section, again we use the M&S procedure to obtain a constraint on 
T

t . It is possible that certain 
radioactive nuclides are sufficiently short-lived, in that essentially all of the nuclei produced prior to some 
time t = t  make no contribution to the abundance of that nuclide at t=T+Δ. If this becomes true for nuclide 
i, we can write equation (3) as: 
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where it  is replaced for zero as a lower limit on the integral. Define an average nuclesynthesis rate 

iit ,


over the interval it ≤ t ≤ T [2], 
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Substituting equation (23) into equation (22) and integrating it, we have: 
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Assuming that  itT   is proportional to radionuclide half-life, therefore: 
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Substituting itT   in equation (24), we have: 
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Supposing that for two different nuclides i and j (half life 
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, with the same definition as equation (18) for ),( jiR , we write equation 

(26) for two nuclides i and j, and obtain ),( jir  as: 
 

                                                                      Ajirjir ),(),(                                                              (27) 
 

where A, the relating factor is: 
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We choose two procedures to estimate this factor and suppose that the number of nuclei produced per 

unit mass going into stars for both nuclides i and j are equal )( ji   . In the first procedure we use 
the expansion of 

x1

1  for 1x , and considering equation(18) we obtain: 
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In the second procedure we use the first two terms of xe  expansion for x , and calculated A is: 
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Finally, equation (27) will have the final form of: 
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and 
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The significance of the derived equations is that they are independent of T and average half-lives as 

they were i  and j  dependant regarding the used method. Having )1( teNP   , parameters 
A, ),( jir  and ),( jir  can be determined for two chronometer nuclides [8]. Using for two different 
nuclides i and j, the relative relation for two chronometers becomes: 
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Using the production and abundance rates of i and j at the time in which the solar system is 

condensed, the equilibrium time between the abundance of i and j nuclides can be determined. 
Substituting in equation )1( teNP    and using equations (31-a) and (31-b), relations between 

),( jir  and ),( jir  are determined. 
 

4. CONSTRAINT ON 
T

t  
 

Let us now assume a set of m chronometers and label them for the longest lived chronometers by i=1, the 
next longest lived by i=2, and so on, to the shortest lived, labelled i=m. For two chronometers )1,2(r  
define 12 ,1,2 tt   [2, 5]. Averaging  e  for nuclide 1 over all T, 1  becomes 1
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This is calculated from equation (23) and the definition of ),( jir . To have equality between both 

sides of the above equation, M&S assumed that  e  in the denominator at the right hand side is equal to 
one )1)1,1((  re  and )1,2(re  at the numerator. They improved the resolution by including 
more chronometers. The constrain obtained is: 
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can be calculated [2, 5]: 
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and the ratio of mean time for the formation of the elements, t  to T, becomes: 
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Replacing aT  instead of 1t  in equation (33) where 10  a , for two chronometers we have: 
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T r( , ) ( r( , ) )
  



                                         (37) 

 
and to obtain T, substitute i  and j  from equation (21). 

 
5. RESULTS AND CONCLUSIONS 

 
Suppose that we have two chronometer nuclides and we use i =1 for Th232  and j=2 for U238 , with decay 
constant 110111 105512.11095.4   yrandyr , respectively. From the M&S data tables )30.0,21.0(49.1)1,2( R . 
For the extreme of 

T

t  we require the extreme of ),( jir . If we use production and abundance rate of 
Thorium / Uranium from Schramm & Wasserburg [3] and the M&S papers [2], and substitute in equation 

)1( teNP   , we will have an exponential equation for T produces two values for T (Fig. 1). It is 
shown that there are two points for the production rate equilibrium, GyrT 01   and 

2 7 095805613T . Gyr .  
Fig. 1 shows that ),( UThR  approaches zero in two cases: The first is in the case that production value 
for Thorium becomes much less than the Uranium 's production value and can be neglected. The second 
case occurs at the condensation era of the Solar System in which the Thorium abundance becomes much 
more than the Uranium abundance. Substituting 2T  in equation )1( teNP    gives us )( NP  
and consequently from equations (31-a) and (31-b), the relation between ),( jir  and ),( jir  are 
determined, 1),(),(  jirjir , 46.2)1,2(max r  and 57.0)1,2(min r . Equation (37) gives us the 
following range for 

T

t : 
 

                                                                    61.043.0  Tt                                                              (38) 
 

Using the above range and equations (21) and (35), the constraint on T will be  
 

                                                            .45.1896.7 GyrTGyr                                                       (39) 
 

Considering the age of the solar system [9], the constraints on galaxy age become: 
 

                                                          .0.235.12 GyrTGyr Gal                                                       (40) 
 

Finally, adding the galactic condensation age (δ=1.5±0.5 Gyr), our calculated constraint on the age of the 
universe will be: 
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                                                    .5.06.245.00.14 GyrAGyr u                                             (41) 
 

M&S determined the galaxy age to be between 8.7 Gyr to 28.1 Gyr. According to the obtained results, the 
range of constraints for the age of the universe is shorter than the M&S and our modifications on the 
model have reduced the interval for the galaxy age 83% and close to being concordant with the other 
available methods. Since uranium has only been observed in a few stars, several groups have employed 
the Th/U ratio to determine the chronometric age of CS31082-001 and the age of the galaxy [10]. Cayrel 
et al. used this method and determined 12 5 3. ( Gyr )  for the age [11]. Hill et al. evaluated this age 
14 0 2 4. . ( Gyr )  [12]. Schatz et al. got to the age of 15 5 3 2. . ( Gyr ) [13] and Wanjo et al. determined 
14 1 2 5. . ( Gyr ) for the age [14]. Dauphas used Th/U in meteorites in conjunction with the observation 
of halo stars and coupled with a chemical evolution method to determine the age of the galaxy 

2 8
2 214 5 


.
.. ( Gyr )  [15]. Tegmark et al. used Wilkinson Microwave Anisotropy Probe and combine that with 

the results from the Sloan Digital Sky Survey and estimated the age 1 0
1 914 1 


.
.. ( Gyr )  for the galaxy [16]. 

Krauss and Chaboyer used cluster results based upon main sequence turn off ages and evaluated the age 
3 5
2 412 5 


.
.. ( Gyr ) [17]. Jimenez et al. with the inclusion of CMB data arrived at the age 3 4

2 212 6 


.

.. ( Gyr )  
[18]. In one case we have enough data to use all the terms of equations (20), and having the abundance 
and production ratio of Th/U more accurately limited than at present, improving the certainty of the 
correct Th/U abundance ratio (i.e. understanding meteoritic) and of the Th/U production ratio in the r-
process, our result from nuclear chronometrical techniques can be more limited and closer to other 
astrophysical methods. 
 

 
 

Fig. 1. Production rate equilibrium times for Th/U ratio. It is shown that there were two points for the production rate 
equilibrium and after at least 3.2 Gyr of nucleosynthesis in stars and supernovae, the production to abundance ratio 
of Th/U achieved its maximum point and then decreases. At the end of the chemical evolution period 7.09 Gyr and 
time interval  , before the condensation of the solar system, the Thorium/Uranium production ratio becomes much 
less than their abundance ratio. Since the decay constants ratio for Thorium /Uranium have a fixed value, 

1337.3ThU  , the peak value shows that, the production ratio for Th/U, at least after 3.2 Gyr of the 

nucleosynthesis era, remains less than the abundance ratio. Infinite minus slope of R(Th,U) shows that by the passing 
of time this reduction will continue.  
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