ALMOST CONVERGENCE THROUGH THE GENERALIZED DE LA VALLÉE-POUSSIN MEAN*

M. MURSALEEN^{1**}, A. M. JARRAH² AND S. A. MOHIUDDINE¹

¹Department of Mathematics, Aligarh Muslim University, Aligarh 202002, India Email: mursaleenm@gmail.com, mohiuddine@gmail.com

²Department of Mathematics, Yarmouk University, Irbid, Jordan Email: ajarrah@yu.edu.jo

Abstract – Lorentz characterized the almost convergence through the concept of uniform convergence of de la Vallée-Poussin mean. In this paper, we generalize the notion of almost convergence by using the concept of invariant mean and the generalized de la Vallée-Poussin mean. We determine the bounded linear operators for the generalized σ -conservative, σ -regular and σ -coercive matrices.

Keywords – Sequence spaces; invariant mean; matrix transformation; bounded linear operators

1. INTRODUCTION AND PRELIMINARIES

We shall write w for the set of all complex sequences $x=(x_k)^{\infty}_{k=0}$. Let \emptyset , l_{∞} , c and c_0 denote the sets of all finite, bounded, convergent and null sequences respectively; and cs be the set of all convergent series. We write $lp:=\{x\in w: \sum_{k=0}^{\infty}|x_k|^p<\infty\}$ for $1\leq p<\infty$. By e and $e^{(n)}(n\in N)$, we denote the sequences such that $e_k=1$ for $k=0,1,\ldots$, and $e_n^{(n)}=1$ and $e_k^{(n)}=0$ ($k\neq n$). For any sequence $x=(x_k)^{\infty}_{k=0}$, let $x^{[n]}=\sum_{k=0}^{n}x_k\,e^{(k)}$ be its n-section.

Note that l_{∞} , c and c_0 are Banach spaces with the sup-norm $\|x\|_{\infty} = \sup_k |x_k|$, and $lp(1 \le p < \infty)$ are Banach spaces with the norm $\|x\|_p = (\sum_{k=0}^{\infty} |x_k|^p)^{1/p}$; while \emptyset is not a Banach space with respect to any norm.

A sequence $(b^{(n)})_{n=0}^{\infty}$ in a linear metric space X is called *Schauder basis* if for every $x \in X$, there is a unique sequence $(\beta^{(n)})_{n=0}^{\infty}$ of scalars such that $x = \sum_{k=0}^{\infty} \beta_k b^{(n)}$.

A sequence space X with a linear topology is called a K-space if each of the maps $p_i: X \to C$ defined by $p_i(x) = x_i$ is continuous for all $i \in \mathbb{N}$. A K-space is called an FK - space if X is complete linear metric space; a BK - space is a normed FK-space. An FK-space $X \supset \emptyset$ is said to have AK if every sequence $X = (x_k)_{k=0}^{\infty} \in X$ has a unique representation $X = \sum_{k=0}^{\infty} x_k e^{(k)}$, that is, $X = \lim_{n \to \infty} x^{[n]}$.

Let X and Y be two sequence spaces and $A = (a_{nk})_{n,k=1}^{\infty}$ be an infinite matrix of real or complex numbers. We write $= (A_n(x))$, $A_n(x) = \sum_k a_{nk} x_k$, provided that the series on the right converges for each n. If $x = (x_k) \in X$ implies that $Ax \in Y$, then we say that A defines a matrix transformation from X into Y, and by (X, Y) we denote the class of such matrices [1].

The following is a very important result:

Lemma 1.1. ([2], Theorem 1.23). Let X and Y be BK spaces and B(X,Y) denote the set of all bounded linear operators from X into Y.

^{*}Received by the editor July 26, 2009 and in final revised form January 12, 2010

^{**}Corresponding author

- (a) Then $(X,Y) \subset B(X,Y)$, that is every $A \in (X,Y)$ defines an operator $L_A \in B(X,Y)$ by $L_A(x) = Ax$ for all $x \in X$.
- (b) If X has AK, then $B(X,Y) \subset (X,Y)$.
- (c) We have $A \in (X, l_{\infty})$ if and only if
- $(1.1) \parallel A \parallel_{(X,l_{\infty})} = \sup_{n} \parallel A_{n} \parallel_{X}^{*} < \infty;$
- if $A \in (X, l_{\infty})$ then
- $(1.2)\parallel L_A\parallel=\parallel A\parallel_{(X,l_\infty)}\ .$

Let σ be a one-to-one mapping from the set N of natural numbers into itself. A continuous linear functional φ on l_{∞} is said to be an *invariant mean* or a σ -mean if and only if (i) $\varphi(x) \geq 0$ if $x \geq 0$ $0 \ (i.e. x_k \ge 0 \ \text{for all } k), \ (ii) \ \phi(e) = 1, \text{ where } e = (1, 1, 1, \cdots), (iii) \ \phi(x) = \phi((x_k)) \ \text{for all } x \in l_{\infty}.$

Throughout this paper we consider the mapping σ which has no finite orbits, that is, $\sigma^p(k) \neq k$ for all integer $k \ge 0$ and $p \ge 1$, where $\sigma^p(k)$ denotes the pth iterate of σ at k. Note that, a σ -mean extends the limit functional on the space c in the sense that $\varphi(x) = \lim x$ for all $x \in c$, (cf [3]). Consequently, $c \subset c$ V_{σ} , the set of bounded sequences all of whose σ -means are equal. We say that a sequence $x = (x_k)$ is σ convergent if and only if $x \in V_{\sigma}$. Using this concept, Schaefer [4] defined and characterized σ conservative, σ -regular and σ -coercive matrices. If σ is translation then V_{σ} is reduced to the set f of almost convergent sequences [5]. The idea of σ -convergence for double sequences was introduced in [6] and further studied recently in [7]. In [8-12] we study various classes of four dimensional matrices, e.g. σ regular, σ -conservative, regularly σ -conservative, boundedly σ -conservative and σ -coercive matrices.

In this paper, we define (σ, λ) -convergence, i.e. the σ -convergence through the concept of uniform convergence of the generalized de la Vallée-Poussin means. We also generalize the above matrices by using the concept of (σ, λ) -convergence and determine the associated bounded linear operators for these matrix classes.

2. (σ, λ) -CONVERGENCE

Actually Lorentz [5] characterized the almost convergence (and hence the σ -convergence) through the concept of uniform convergence of de la Vallée -Poussin means. In this paper, we define the σconvergence through the concept of uniform convergence of the generalized de la Vallée -Poussin means and we call it the (σ, λ) -convergence, which is more general than almost convergence and σ -convergence

Let $\lambda = (\lambda_n)$ be a non-decreasing sequence of positive numbers tending to ∞ such that $\lambda_{m+1} \le$ λ_m , $\lambda_1 = 0$, $\rho_m(x) = \frac{1}{\lambda_m} \sum_{j \in I_m} x_j$ is called the *generalized de la Vallée – Poussin mean*, where $Im = [m - \lambda_m + 1, m]$.

A sequence $x = (x_k)$ of real numbers is said to be (σ, λ) -convergent to a number L if and only if $x \in V_{\sigma}^{\lambda}$, where

$$V_{\sigma}^{\lambda} = \{x \in l_{\infty} : \lim_{m \to \infty} t_{mn}(x) = L, \text{ uniformly in } n; L = (\sigma, \lambda) - \lim x \},$$

$$t_{mn}(x) = \frac{1}{\lambda} \sum_{j \in I_m} x_{\sigma^j(n)}.$$

 $t_{mn}(x) = \frac{1}{\lambda_m} \sum_{j \in I_m} x_{\sigma^j(n)}.$ We denote by V_{σ}^{λ} the space of all (σ, λ) -convergent sequences. Note that

- (i) if $\sigma(n) = n + 1$, then V_{σ}^{λ} is reduced to the space $f_{-}(\text{cf }[13])$,
- (ii) and if $\lambda_m = m$, then V_{σ}^{λ} is reduced to the space V_{σ} ,
- (iii) if $\sigma(n) = n + 1$ and $\lambda_m = m$, then V_{σ}^{λ} is reduced to the space f,
- (iv) $c \subset V_{\sigma}^{\lambda} \subset l_{\infty}$.

Remark 2.1. It is easy to see that V_{σ}^{λ} is a *BK* space with $||x|| = \sup_{n \to \infty} n |tmn(x)|$.

Remark 2.2. Note that a convergent sequence is (σ, λ) -convergent but converse need not hold, e.g. let $\lambda_m = m$, $\sigma(n) = n + 1$ and the sequence $x = (x_k)$ be defined by

$$x_k = \begin{cases} 1; & \text{if k is odd,} \\ -1; & \text{if k is even,} \end{cases}$$

then $x = (x_k)$ is (σ, λ) -convergent to 0 but not convergent.

3. (σ, λ) -CONSERVATIVE MATRICES

Definition 3.1. An infinite matrix $A = (a_{nk})$ is said to be (σ, λ) -conservative if and only if $Ax \in V_{\sigma}^{\lambda}$ for all $x = (x_k) \in c$. We denote this by $A \in (c, V_{\sigma}^{\lambda})$.

Definition 3.2. We say that infinite matrix $A = (a_{nk})$ is said to be (σ, λ) -regular if and only if $A = (a_{nk})$ is (σ, λ) -conservative and (σ, λ) - $\lim Ax = \lim x$ for all $x = (x_k) \in c$. We denote this by $A \in (c, V_{\sigma}^{\lambda})_{reg}$.

Remark 3.1. If we take $\lambda_n = n$, then V_{σ}^{λ} is reduced to the space and (σ, λ) -conservative and (σ, λ) -regular matrices are respectively reduced to σ -conservative and σ -regular matrices (cf [4]); and in addition, if $\sigma(n) = n + 1$ then the space V_{σ}^{λ} is reduced to the space f of almost convergent sequences (cf [5]) and these matrices are reduced to the almost conservative and almost regular matrices (cf [14]) respectively.

In the following theorem we characterize (σ, λ) -conservative and (σ, λ) -regular matrices and find the associated bounded linear operators.

Theorem 3.1. (a) A matrix $A = (a_{nk})$ is (σ, λ) -conservative, i.e. $A \in (c, V_{\sigma}^{\lambda})$ if and only if it satisfies the following conditions

$$(i) \ \|A\|_{(l_{\infty},l_{\infty})=} \mathrm{sup}_n \sum_k |a_{nk}| < \infty \, ;$$

(ii) $a_{(k)} = (a_{nk})_{n=1}^{\infty} \in V_{\sigma}^{\lambda}$, for each k;

$$(iii) \ a = \left(\sum_{k} a_{nk}\right)_{n=1}^{\infty} \in V_{\sigma}^{\lambda}.$$

In this case, the (σ, λ) -limit of Ax is

$$\lim x \left[u - \sum_{k} u_k \right] + \sum_{k} x_k u_k,$$

Where $u = (\sigma, \lambda)$ -lim a and $u_k = (\sigma, \lambda)$ -lim a_k , k = 1, 2, ...

(b) $A \in (c, V_{\sigma}^{\lambda})$ defines an operator $L_A \in \mathcal{B}(c, V_{\sigma}^{\lambda})$ by $L_A(x) = Ax$ for all $x \in c$, and $||L_A|| = ||A||_{(l_{\infty}, l_{\infty})}$.

Proof: (a) It is quite similar to that of Theorem 1 of Schaefer [4] once we take

$$t_{mn}(x) = \frac{1}{\lambda_m} \sum_{k=1}^{\infty} \sum_{j \in I_m} a_{\sigma^j(n),k} x_k.$$

(b) It follows directly from Lemma 1.1(a). Since V_{σ}^{λ} is a *BK* space and $(c, V_{\sigma}^{\lambda}) \subset (c, l_{\infty}) \subset (l_{\infty}, l_{\infty})$, we get by Lemma 1.1(c) $||L_A|| = ||A||_{(l_{\infty}, l_{\infty})}$.

Spring 2009

This completes the proof of the theorem.

Now, we deduce the following.

Corollary 3.2. $A = (a_{nk})$ is (σ, λ) -regular if and only if the conditions (i), (ii) with (σ, λ) -limit zero for each k, and (iii) with (σ, λ) -limit 1 of Theorem 3.1 hold. In this case, the (σ, λ) -limit of Ax is $\sum_k x_k u_k$.

4. (σ, λ) -COERCIVE MATRICES

Definition 4.1. A matrix $A = (a_{nk})$ is said to be (σ, λ) -coercive if and only if $Ax \in V_{\sigma}^{\lambda}$ for all $x = (x_k) \in l_{\infty}$, and this is denoted by $A \in (l_{\infty}, V_{\sigma}^{\lambda})$.

Remark 4.1. If we then take $\lambda_n = n$, (σ, λ) -coercive matrices are reduced to σ -coercive matrices (cf [4]); and in addition, if $\sigma(n) = n + 1$ then these matrices are reduced to the almost coercive matrices (cf [15]). We prove the following lemma which will be used in our next theorem.

Lemma 4.1. Let $B(n) = (b_{mk}(n))$, n = 0,1,2,... be a sequence of infinite matrices such that

- (i) $||B(n)|| < H < +\infty$ for all n; and
- (ii) $\lim_{m} b_{mk}(n) = 0$ for each k, uniformly in n.

Then

$$\lim_{m} \sum_{k} b_{mk}(n) x_{k} = 0 \text{ uniformly in } n \text{ for each } x \in l_{\infty}$$
 (1)

If and only if

$$\lim_{m} \sum_{k} |b_{mk}(n)| = 0 \text{ uniformly in } n.$$
 (2)

Proof: Let (2) hold and $x \in l_{\infty}$. Then, since

$$\left|\sum_{k} b_{mk}(n) x_{k}\right| \leq \|x\|_{\infty} \sum_{k} |b_{mk}(n)|,$$

condition (1) holds clearly.

Conversely suppose that (1) holds but (2) does not hold. Let

$$\lim_{m} \sum_{k} |b_{mk}(n)| = \lambda > 0 \text{ for all } n.$$

For fixed n, let us write b(m, k) in place of $b_{mk}(n)$. Let for a given $\varepsilon > 0$,

$$N(\varepsilon) = \left\{ m \in \mathbb{N} : \sum_{k} |b(m, k)| > \lambda - \varepsilon \right\}.$$

Then by (i) and (ii) there exist increasing sequences of integers $m_r \in N(1/r)$ and k_r such that

$$\begin{cases} \sum_{k \le k_{r-1}} |b(m_r, k)| < \frac{1}{r}, \\ \sum_{k > k_r} |b(m_r, k)| < \frac{1}{r}. \end{cases}$$

$$(3)$$

Now define $x \in l_{\infty}$ such that $k_{r-1} < k < k_r$,

$$x_k = \begin{cases} 1 & \text{; if } b(m_r, k) \ge 0, \\ -1 & \text{; if } b(m_r, k) < 0. \end{cases}$$

Then for all $m_r \in N\left(\frac{1}{r}\right)$,

$$\begin{split} \sum_{k} b(m_{r},k)x_{k} &= \sum_{k \leq k_{r-1}} b(m_{r},k)x_{k} + \sum_{k_{r-1} < k \leq k_{r}} b(m_{r},k)x_{k} + \sum_{k > k_{r}} b(m_{r},k)x_{k} \\ &\geq \sum_{k_{r-1} < k \leq k_{r}} b(m_{r},k)x_{k} - \|x\|_{\infty} \sum_{k \leq k_{r-1}} |b(m_{r},k)| - \|x\|_{\infty} \sum_{k > k_{r}} |b(m_{r},k)| \\ &\geq \sum_{k_{r-1} < k \leq k_{r}} b(m_{r},k)x_{k} - \frac{2}{r} \\ &= \sum_{k_{r-1} < k \leq k_{r}} |b(m_{r},k)| - \frac{2}{r} \\ &= \sum_{k} |b(m_{r},k)| + \sum_{k \leq k_{r-1}} |b(m_{r},k)| + \sum_{k > k_{r}} |b(m_{r},k)| - 2/r \\ &\geq \sum_{k} |b(m_{r},k)| - \frac{4}{r}. \end{split}$$

Therefore,

$$\lim_{r} \sum_{k} b(m_r, k) x_k \ge \lim_{r} \sum_{k} |b(m_r, k)|$$

and (1) implies that

$$\lim_{m} \sum_{k} |b_{mk}(n)| = 0 \text{ uniformly in } n.$$

This completes the proof of the lemma.

Now, we characterize (σ, λ) -coercive matrices and obtain the bounded linear operator for these matrices.

Theorem 4.1. (a) A matrix $A = a_{nk}$ is (σ, λ) -coercive, i.e. $A \in (l_{\infty}, V_{\sigma}^{\lambda})$ if and only if (i) and (ii) of Theorem 3.1 hold, and

(iii)
$$\lim_{m} \sum_{k=1}^{\infty} \left| \sum_{j \in I_m} a_{\sigma^j(n),k} - u_k \right|$$
 uniformly in n .

In this case, the (σ, λ) -limit of Ax is

$$\sum_{k} x_k u_k \quad \forall x \in l_{\infty},$$

Where $u_k = (\sigma, \lambda)$ -lim a_k .

(b) $A \in (l_{\infty}, V_{\sigma}^{\lambda})$ defines an operator $L_A \in \mathcal{B}(l_{\infty}, V_{\sigma}^{\lambda})$ by $L_A(x) = Ax$ for all $x \in l_{\infty}$, and $||L_A|| = ||A||_{(l_{\infty}, l_{\infty})}$.

Proof: (a) Sufficiency. Same as in Theorem 3 of [4].

Necessity. Let A be (σ, λ) -coercive matrix. This implies that A is (σ, λ) -conservative, then we have condition (i) and (ii) from Theorem 3.1. Now we have to show that (iii) holds.

Suppose that for some n, we have

$$\operatorname{limsup}_{n} \sum_{k=1}^{\infty} \left| \sum_{j \in I_{m}} \left[a_{\sigma^{j}(n),k} - u_{k} \right] \right| / \lambda_{m} = N > 0.$$

Since ||A|| is finite, N is also finite. We observe that since $\sum_{k=1}^{\infty} |u_k| < \infty$ and A is (σ, λ) -coercive, the matrix $B = (b_{nk})$, where $b_{nk} = a_{nk} - u_k$, is also a (σ, λ) -coercive matrix. By an argument similar to that of Theorem 2.1 in [15], one can find $x \in l_{\infty}$ for which $Bx \notin V_{\sigma}^{\lambda}$. This contradiction implies the necessity of (iii).

Now, we use Lemma 4.1 to show that this convergence is uniform in n. Let

$$h_{mk}(n) = \sum_{j \in I_m} \left[a_{\sigma^j(n),k} - u_k \right] / \lambda_m$$

and let H(n) be the matrix $(h_{mk}(n))$. It is easy to see that $||H(n)|| \le 2||A||_{(l_{\infty},l_{\infty})}$ for every n; and from condition (ii)

 $\lim_{m} h_{mk}(n) = 0$ for each k, uniformly in n.

For any $x \in l_{\infty}$

$$\lim_{m} \sum_{i \in I_{m}} h_{mk}(n) x_{k} = (\sigma, \lambda) - \lim_{k \to 1} Ax - \sum_{k=1}^{\infty} u_{k} x_{k}$$

and the limit exists uniformly in n, since $Ax \in V_{\sigma}^{\lambda}$. Moreover, this limit is zero since

$$\left| \sum_{k=1}^{\infty} h_{mk}(n) x_k \right| \leq \|x\|_{\infty} \sum_{k=1}^{\infty} \left| \sum_{j \in I_m} \left[a_{\sigma^j(n),k} - u_k \right] \right| / \lambda_m.$$

Hence

$$\lim_{m} \sum_{k=1}^{\infty} |h_{mk}(n)| = 0 \text{ uniformly in } n;$$

i.e. the condition (iii) holds.

(b) Observe that $(l_{\infty}, V_{\sigma}^{\lambda}) \subset (l_{\infty}, l_{\infty})$ and the proof is the same as that of Theorem 3.1 (b). This completes the proof of the theorem

5.
$$(l_1, V_{\sigma}^{\lambda})$$
-MATRICES

We prove the following theorem:

Theorem 5.1. (a) We have $(l_1, V_{\sigma}^{\lambda}) = \mathcal{B}(l_1, V_{\sigma}^{\lambda})$ and $A \in (l_1, V_{\sigma}^{\lambda})$ if and only if

(i)
$$||A|| = \sup_{m,n,k} \left| \frac{1}{\lambda_m} \sum_{j \in I_m} a_{\sigma^j(n),k} \right| < \infty$$
, and

the condition (ii) of Theorem 3.1 hold.

(b) If
$$A \in (l_1, V_{\sigma}^{\lambda})$$
 then $||L_A|| = ||A||$.

Proof: Since l_1 has AK, Lemma 1.1 (b) yields the first part.

Sufficiency. Let the conditions hold. For $x = (x_k) \in l_1$, we see that

$$\lim_{m \to \infty} \frac{1}{\lambda_m} \sum_{k=1}^{\infty} \sum_{j \in I_m} a_{\sigma^j(n),k} x_k = \sum_{k=1}^{\infty} a_k x_k \text{ , uniformly in } n$$
 (4)

it also converges absolutely. Furthermore, $\frac{1}{\lambda_m}\sum_{k=1}^{\infty}\sum_{j\in I_m}a_{\sigma^j(n),k}x_k$ converges absolutely for each m,n. Given $\varepsilon>0$, there exists $k_0=k_0(\varepsilon)$ such that

$$\sum_{k>k_0} |x_k| < \varepsilon. \tag{5}$$

By (ii), we can find $m_0 \in \mathbb{N}$ such that

$$\left| \sum_{k > k_0} \left[\frac{1}{\lambda_m} \sum_{j \in I_m} a_{\sigma^j(n),k} - a_k \right] x_k \right| < \infty, \tag{6}$$

for all $m > m_0$, uniformly in n. Now

$$\left|\sum_{k=1}^{\infty} \left[\frac{1}{\lambda_m} \sum_{j \in I_m} a_{\sigma^j(n),k} - a_k \right] x_k \right| \leq \left| \sum_{k \leq k_0} \left[\frac{1}{\lambda_m} \sum_{j \in I_m} a_{\sigma^j(n),k} - a_k \right] x_k \right| + \sum_{k > k_0} \left| \frac{1}{\lambda_m} \sum_{j \in I_m} a_{\sigma^j(n),k} - a_k \right| |x_k|,$$

for all $m > m_0$, uniformly in n, by (5), (6) and (i). Hence (4) holds.

Necessity. Let us define a continuous linear functional Q_{mn} on l_1 by

$$Q_{mn}(x) = \frac{1}{\lambda_m} \sum_{k} \sum_{j \in I_m} a_{\sigma^j(n),k} x_k.$$

Now

$$|Q_{mn}(x)| \le \sup_k \left| \frac{1}{\lambda_m} \sum_{j \in I_m} a_{\sigma^j(n),k} \right| ||x_k||_1$$

and hence

$$||Q_{mn}|| \le \sup_{k} \left| \frac{1}{\lambda_m} \sum_{j \in I_m} a_{\sigma^j(n),k} \right|. \tag{7}$$

For any fixed $k \in \mathbb{N}$, define $x = (x_i)$ by

$$x_{i} = \begin{cases} sgn\left(\frac{1}{\lambda_{m}} \sum_{j \in I_{m}} a_{\sigma^{j}(n),k}\right); \text{ for } i = k \\ 0; \text{ for } i \neq k. \end{cases}$$

Then $||x||_1 = 1$, and

$$|Q_{mn}(x)| = \left| \frac{1}{\lambda_m} \sum_{j \in I_m} a_{\sigma^j(n),k} x_k \right| = \left| \frac{1}{\lambda_m} \sum_{j \in I_m} a_{\sigma^j(n),k} \right| ||x||_1,$$

So that

$$||Q_{mn}|| \ge \sup_{k} \left| \frac{1}{\lambda_m} \sum_{j \in I_m} a_{\sigma^j(n),k} \right|. \tag{8}$$

Now, by (7) and (8)

$$\|Q_{mn}\| = \sup_{k} \left| \frac{1}{\lambda_m} \sum_{j \in I_m} a_{\sigma^j(n),k} \right|.$$

Since $A \in (l_1, V_{\sigma}^{\lambda})$, we have

$$\sup_{m,n} |Q_{mn}(x)| = \sup_{m,n} \left| \frac{1}{\lambda_m} \sum_{k} \sum_{j \in I_m} a_{\sigma^j(n),k} x_k \right| < \infty.$$

Therefore, by the uniform boundedness principle, we have

$$\sup_{m,n} \|Q_{mn}(x)\| = \sup_{m,n,k} \left| \frac{1}{\lambda_m} \sum_{j \in I_m} a_{\sigma^j(n),k} \right| < \infty.$$

(b) If $A \in (l_1, V_{\sigma}^{\lambda})$ then

$$||L_A(x)|| = \sup_{m,n} |t_{mn}(Ax)| \le ||A|| ||x||_1$$

Which implies that $||L_A(x)|| \le ||A||$. Also, $L_A \in \mathcal{B}(l_1, V_{\sigma}^{\lambda})$ implies that

$$||L_A(x)|| = ||Ax|| \le ||L_A|| ||x||_1$$

and it follows from $\|e^{(k)}\|_1 = 1$ for all k that $\|A\| \le \|L_A\|$. Hence $\|L_A\| = \|A\|$. This completes the proof of the theorem.

REFERENCES

- 1. Aydin, C. & Basar, F. (2006). Some generalizations of the sequence space a_p^r . IJST, 30(A2), 175-190.
- 2. Malkowsky, E. & Rakočević, V. (2000). An introduction into the theory of sequence spaces and measures of noncompactness. *Zbornik radova, Matematički Institute SANU*, 9(17), 143-234.
- 3. Mursaleen, M. (1983). On some new invariant matrix methods of summability. *Quart. J. Math. Oxford*, 34, 77-86.
- 4. Schaefer, P. (1972). Infinite matrices and invariant means, Proc. Amer. Math. Soc., 36, 104-110.
- 5. Lorentz, G. G. (1948). A contribution to theory of divergent sequences, Acta Math., 80, 167-190.
- 6. Cakan, C., Altay, B. & Mursaleen, M. (2006). The σ-convergence and σ-core of double sequences. *Applied Mathematics Letters*, 19, 1122-1128.
- 7. Cakan, C., Altay, B. & Coskun, H. (2009). σ-regular matrices and a σ-core theorem for double sequences. *Hacettepe J. Math. Stat.*, 38(1), 51-58.
- 8. Mursaleen, M. & Mohiuddine, S. A. (2010). Some new double sequence spaces of invariant means. *Glasnik Matematicki*, 45(65), 139-153.
- 9. Mursaleen, M. & Mohiuddine, S. A. (2007). Double σ-multiplicative matrices. *J. Math. Anal. Appl.*, 327, 991-996.
- 10. Mursaleen, M. & Mohiuddine, S. A. (2008). Regularly σ-conservative and σ-coercive four dimensional matrices. *Computers and Mathematics with Applications*, *56*, 1580-1586.
- 11. Mursaleen, M. & Mohiuddine, S. A. (2009). On σ-conservative and boundedly σ-conservative four dimensional matrices. *Computers and Mathematics with Applications*, *59*, 880-885.
- 12. Mursaleen, M. & Mohiuddine, S. A. (2010). Some inequalities on sublinear functional related to the invariant mean for double sequences. *Math. Ineq. Appl.*, 13(1), 157-163.

- 13. Bala, S. (1994). A study on characterization of some classes of matrix transformations between some sequence spaces, Ph.D. Thesis, A.M.U. Aligarh.
- 14. King, J. P. (1966). Almost summable sequences, Proc. Amer. Math. Soc., 17, 1219-1225.
- 15. Eizen, C. & Laush, G. (1969). Infinite matrices and almost convergence. Math, Japan, 14, 137-143.