\(\Lambda BV \) AS A NON SEPARABLE DUAL SPACE*

A. AHMADI LEDARI** AND M. HORMOZI

1Department of Mathematics, University of Sistan and Baluchestan, Zahedan, I. R. of Iran
 Email: ahmadi@hamoon.usb.ac.ir
2University of Gothenburg, Chalmers University of Technology, Gothenburg, Sweden
 Email: Hormozi@chalmers.se

Abstract – Let \(C \) be a field of subsets of a set \(I \). Also, let \(\Lambda = \{\lambda_i\}_{i=1}^{\infty} \) be a non-decreasing positive sequence of real numbers such that \(\lambda_i = 1, \ 1/\lambda_i \to 0 \) and \(\sum_{i=1}^{\infty} 1/\lambda_i = \infty \). In this paper we prove that \(\Lambda BV \) of all the games of \(\Lambda \)-bounded variation on \(C \) is a non-separable and norm dual Banach space of the space of simple games on \(C \). We use this fact to establish the existence of a linear mapping \(T \) from \(\Lambda BV \) onto \(FA \) (finitely additive set functions) which is positive, efficient and satisfies a weak form of symmetry, namely invariance under a semigroup of automorphisms of \((I, C)\).

Keywords – Set functions, duality, compactness, non separable

1. INTRODUCTION

Let \(C \) be a field of subsets of a nonempty set \(I \). It is well-known that the space \(FA \) of all the finitely additive games of bounded variation on \(C \), equipped with the total variation norm, is isometrically isomorphic to the norm dual of the space of all simple functions on \(C \), endowed with the sup norm ([1]) (also see [2]). Maccheroni and Ruckle in [3] established a parallel result for the space \(BV \) of all the games of bounded variation on \(C \). Indeed, they showed that \(BV \), equipped with the total variation norm, is isometrically isometric to the norm dual of the space of all simple games endowed with a suitable norm where a simple game is a game which is non zero only on a finite number of elements of \(C \). Let \(\Lambda = \{\lambda_i\}_{i=1}^{\infty} \) be a non-decreasing positive sequence of real numbers such that \(\lambda_i = 1, \ 1/\lambda_i \to 0 \) and \(\sum_{i=1}^{\infty} 1/\lambda_i = \infty \). We introduce space \(\Lambda BV \) which shares many properties of space \(BV \). Here, we prove that space \(\Lambda BV \) of all the games of \(\Lambda \) bounded variation on \(C \) equipped with the total variation norm, is isometrically isometric to the norm dual of the space of all simple games, endowed with a suitable norm. We use this fact to establish the existence of a linear mapping \(T \) from \(\Lambda BV \) onto \(FA \) (finitely additive set functions) which is positive, efficient and satisfies a weak form of symmetry, namely invariance under a semigroup of automorphisms of \((I, C)\).

2. PRELIMINARIES

A set function \(\nu : C \to R \) is a game if \(\nu(\emptyset) = 0 \). A game on \(C \) is monotone if \(\nu(A) \leq \nu(B) \) whenever \(A \subseteq B \). A chain \(\{S_i\}_{i=0}^{n} \) in \(C \) is a finite strictly increasing sequence

*Received by the editor November 24, 2008 and in final revised form August 3, 2010
**Corresponding author
of the elements of C. ΛBV is the set of all games such that

$$
\|u\| = \sup \left\{ \sum_{i=1}^{n} \frac{u(S_i) - u(S_{i-1})}{\lambda_i} : \{S_i\}_{i=0}^{n} \text{ is a chain in } C \right\} < \infty.
$$

A game in ΛBV is said to be of Λ bounded variation. A game is called a simple game if it is non-zero only on a finite number of elements of C. A function u in ΛBV is called finitely additive if

$$
u(A \cup B) = u(A) + u(B)
$$

whenever A and B are in C and $A \cap B = \phi$.

The set FA of finitely additive functions in ΛBV forms a closed subspace of ΛBV. A function u in ΛBV is called increasing if $u(A) \leq u(B)$ whenever $A \subseteq B$. Each u in ΛBV has the form $u = u^* + \nu$ where u^* and ν are increasing and $\|u\| = u^*(I) + \nu(I)$. A linear mapping T in $L(BV)$ is positive if Tu increases whenever u increases.

Let C denote the group of automorphisms of (I, C). A subspace X is called symmetric if $u \circ \pi$ is in X for each x in X and each π in C. A value is a linear mapping T from a symmetric subspace X of ΛBV onto the space FA of finitely additive set functions which satisfies three conditions:

(a) T is positive: i.e., Tu increases whenever u increases.

(b) T is symmetric: i.e., $T(u \circ \pi) = (Tu) \circ \pi$ for each π in C and u in X.

(c) T is efficient: $(Tu)(I) = u(I)$ for each u in X.

In this note we establish the existence of linear operations from all of ΛBV onto FA which satisfy (a), (b) and a weaker form of (c), namely symmetry under a semigroup of C. In addition, these linear operators are projections (i.e., $Tu = u$ for u in FA). Our main result is that, given any locally finite subgroup Φ of C there is a projection T from ΛBV onto FA which is symmetric under Φ. Since ΛBV is a (proper) subspace of R^C, it inherits a topology from the product topology of R^C. This is the weak topology generated by the projection functional

$$
P_a : \Lambda BV \to R
$$

where $A \in C$. A net $\{u_a\}$ converges to u in this topology if $u_a(A) \to u(A)$ for all $A \in C$ (we write $u_a \overset{c}{\to} u$). This topology is called \textit{\Lambda-vague} topology for the analogy with the vague topology on the set of probability measures.

3. ΛBV AS A NON SEPARABLE DUAL SPACE

In [4], Aumann and Shapley proved that BV is a Banach space. Here, we show ΛBV is a Banach space too.

Let $\Omega = \{S_i\}_{i=0}^{n}$ be a chain. For any set function ν we define

$$
\|\nu\|_\Omega = \left\{ \sum_{i=1}^{n} \frac{\nu(S_i) - \nu(S_{i-1})}{\lambda_i} \right\} < \infty.
$$
This shows that a necessary and sufficient condition, $\nu \in \Lambda BV$, is that $\|\nu\|_\Omega$ be bounded over all chain Ω. Then, $\nu \in \Lambda BV$ if and only if $\|\nu\| = \sup\|\nu\|_\Omega$, where the \sup is taken over all chains Ω.

It is obvious that this defines a norm on ΛBV. Now, we show that with this norm, ΛBV is a complete space.

Theorem 3.1. ΛBV is complete, hence a Banach space.

Proof: Let $\{\nu_n\}$ be a Cauchy sequence of elements of ΛBV. For any subset S of I, we show that sequence $\{\nu_n(S)\}$ is a Cauchy sequence in R.

Let S be a subset of I. For the chain Ω,

$$\Omega \subseteq S \subseteq I;$$

We have

$$\|\nu_n - \nu_m\| \geq \frac{\left| (\nu_n(S) - \nu_m(S)) - (\nu_n(\Phi) - \nu_m(\Phi)) \right|}{\lambda_1} = \left| (\nu_n(S) - \nu_m(S)) \right|.$$

Then the sequence $\{\nu_n(S)\}$ is a Cauchy sequence in R and is convergent; denote it’s limit by $\nu(S)$.

We must first show that ν is Λ-bounded variation. Let N be such that $\|\nu_n - \nu_m\| \leq 1$ whenever $n \geq N$. Then for each chain Ω and each $n \geq N$ we have

$$\|\nu_n\|_\Omega - \|\nu_N\| \leq \|\nu_n\|_\Omega - \|\nu_N\|_\Omega \leq \|\nu_n - \nu_N\|_\Omega \leq \|\nu_n - \nu_N\| \leq 1$$

letting $n \to \infty$, we deduce

$$\|\nu\|_\Omega \leq 1 + \|\nu_N\|.$$

Hence ν is Λ-bounded variation. That $\|\nu_n - \nu\| \to 0$ is now easily verified, so the theorem is proved.

Here, we show that ΛBV is a non separable space. So, the dual of ΛBV is non separable too.

Theorem 3.2. $\Lambda BV[a,b]$ is non separable.

Proof: For each a satisfying $a < s < b$ and subset A of $[a,b]$, let $\chi_s(A)$ be the set function defined by

$$\chi_s(A) = \begin{cases} 1 & \text{if } [a,s] \subseteq A \\ 0 & \text{otherwise.} \end{cases}$$

We see that χ_s is a monotone set function and belongs to the $\Lambda BV[a,b]$. For any s and r with $a < s < r < b$, let Ω be the chain $\emptyset \subseteq [a,s] \subseteq I$. Then
This completes the proof.

4. ABV AS A DUAL SPACE

In [3], Maccheroni and Ruckle showed that BV is a dual Banach space. Indeed, they showed that BV is isometrically isomorphic to the norm dual of space of all simple games. Here, we establish this result for $ΛBV$.

We define the game $e_A : C \to R$ by

$$e_A(B) = \begin{cases} 1 & \text{if } B = A \\ 0 & \text{otherwise} \end{cases}$$

Let X be the space of all simple games. For all $A \in C - \{\emptyset\}$ and $e_{\emptyset} = 0$ being $x = \sum_{A \in C} x(A)e_A$ for all $x \in X$, we have $X = \{e_A : A \in C \}$. For each chain $Ω = \{S_i\}_{i=0}^n$ in C, define a semi norm on X by

$$\| x \|_{Ω} = \max_{0 \leq k \leq n} \left| \sum_{i=k}^n x(S_i) \right|.$$ (1)

For all $x \in X$. Let $X_Ω = \{e_A : A \in Ω\}$. If $x \in X_Ω$, we say that X depends on the chain $Ω$. For all $x \in X$, set

$$\| x \| = \inf \sum_{e=1}^L \| x_e \|_{Ω_e}$$

where the inf is taken over all finite decompositions $x = \sum_{e=1}^L x_e$ in which x_e depends on the chain $Ω_e$ and $\| . \|_{Ω_e}$ is defined as in (1) for all $e = 1, 2, ..., L$.

Lemma 4 of [3] showed that this equation defines a norm on X.

Lemma 4.1. The function $\| . \| : X \to R$ is a norm on X.

Given a linear continuous functional $f : X \to R$, define the game G_f as follows

$$G_f(A) = f(e_A)$$

For all $A \in C$.

Theorem 4.2. Let X^* be the norm dual of $(X, \| . \|)$. The operator

$$G : X^* \to ΛBV$$
is an isometric isomorphism from X^* onto ΛBV.

Proof: We first show that if $\Omega = \{S_j\}_{j=0}^n$ is a chain in C, then

$$
\sum_{k=1}^n \left| \frac{G_f(S_k) - G_f(S_{k-1})}{\lambda_k} \right| \leq \|f\|
$$

which implies that $G_f \in \Lambda BV$ and $\|G_f\| \leq \|f\|$.

Define $x \in X_\Omega$ by

$$
x(S_n) = Sgn(f(eS_n) - f(eS_{n-1})),
$$

$$
x(S_n) + x(S_{n-1}) = Sgn(f(eS_{n-1}) - f(eS_{n-2})),
$$

$$
\vdots
$$

$$
x(S_n) + x(S_{n-1}) + \cdots + x(S_1) = Sgn(f(eS_1) - f(eS_0)),
$$

$$
x(S_0) = 0.
$$

Obviously $\|x\|_\Omega \leq 1$, so that $\|x\| < 1$. Similar to proof of theorem 5 of [3], we have,

$$
\|f\| \geq f(x) = \sum_{j} \left| G_f(S_j) - G_f(S_{j-1}) \right|
$$

$$
\geq \sum_{j=1}^n \left| \frac{G_f(S_j) - G_f(S_{j-1})}{\lambda_j} \right|
$$

which implies that $\|f\| \geq \|G_f\|$. Then G is well defined and obviously linear and injective.

Given $u \in \Lambda BV$, we can define f_u on X by

$$
f_u(x) = \sum_{A_j \in C} \frac{u(A_j)}{\lambda_j} x(A_j),
$$

for all $x \in X$. It is trivial that f_u is linear.

If x depends on $\Omega = \{S_j\}_{j=0}^n$, then

$$
f_u(x) = \sum_{j=0}^n \frac{u(S_j)}{\lambda_j} x(S_j)
$$

$$
= \frac{u(S_0)}{\lambda_0} \sum_{k=0}^n x(S_k) + \sum_{j=1}^n \left[\frac{u(S_j) - u(S_{j-1})}{\lambda_j} \sum_{k=j}^n x(S_k) \right]
$$

$$
= \sum_{j=1}^n \left[\frac{u(S_j) - u(S_{j-1})}{\lambda_j} \sum_{j=1}^n x(S_k) \right]
$$
\[
\sum_{j=1}^{n} \left[\frac{u(S_j) - u(S_{j-1})}{\lambda_j} \sum_{k=j}^{n} x(S_k) \right] \leq \| x \|_{\Omega} \| u \|.
\]

If \(x = \sum_{e=1}^{L} x_e \) with \(x_e \in X_{\Omega_e} \) for all \(e = 1, 2, \ldots, L \), then

\[
f_u(x) = \sum_{e=1}^{L} f_u(x_e)
\]

\[
\leq \sum_{e=1}^{L} \| u \| \| x_e \|_{\Omega_e}
\]

\[
\leq \| u \| \sum_{e=1}^{L} \| x_e \|_{\Omega_e},
\]

and so

\[
f_u(x) \leq \inf \left\{ \| u \| \sum_{e=1}^{L} \| x_e \|_{\Omega_e} : x = \sum_{e=1}^{L} x_e, \ x_e \in X_{\Omega_e} \right\}
\]

\[
= \| u \| \| x \|.
\]

We conclude that \(f_u \in X^* \), \(G(f_u) = u \) and \(G \) is onto. For all \(u \in \Lambda BV \), \(f_u = G_u^{-1} \) and \(\| G_u^{-1} \| = \| f_u \| \leq \| u \| \).

Therefore, for all \(f \in X^* \), \(\| f \| = \| G_u^{-1} \| \leq \| G_f \| \) and \(G \) is an isometry.

Let \(G \) be similar to the previous theorem. We show that,

Theorem 4.3. \(G \) is weak\(^*\) \(\Lambda - \) vague homeomorphism.

Proof: Let \(\left\{ f^a \right\} \) be a net in \(X^* \). By using the notations of the previous theorem, we have that \(f^a \xrightarrow{w} f \) iff \(f^a(x) \to f(x) \) for all \(x \in X \) iff \(f^a(e_A) \to f(e_A) \) for all \(A \in C \) iff \(G_{f^a}(A) \to G_f(A) \) for all \(A \in C \) iff \(G_{f^a} \xrightarrow{C} G_f \).

In Theorem 4.2, together with the Alaoghlu theorem, we have the compactness of the unit ball \(U(BV) \) in the \(\Lambda - \) vague topology.

Theorem 4.4. The unit ball \(U(BV) \) is compact with respect to the \(\Lambda - \) vague topology.

5. PROJECTIONS FROM \(\Lambda BV \) ONTO \(FA \)

Given \(I \) and \(C' \) as in §1, let \(\Theta \) denote the set of one-to-one functions \(\Theta \) from \(I \) into \(I \) such that \(\pi(S) \in C \) if and only if \(S \in C \). Then \(\Theta \) forms a group under composition. For each \(\pi \) in \(\Theta \) the function \(T_\pi \) defined by \(T_\pi u = u \circ \pi \) is a linear operator from \(\Lambda BV \) into \(\Lambda BV \) with \(\| T_\pi \| = 1 \). A function \(u \) in \(\Lambda BV \) is called finitely additive if

\[
u(A \cup B) = \nu(A) + \nu(B)
\]
whenever A and B are in C an $A \cap B = \phi$. The set $F \Lambda$ of finitely additive functions in ΛBV forms a closed subspace of ΛBV. A function u in ΛBV is called increasing if $u(A) \leq u(B)$ whenever $A \subseteq B$. Each u in ΛBV has the form $u = u^+ - u^-$ when u^+ and u^- are increasing and $\|u\| = u^+(I) - u^-(I)$. A linear mapping T in $L(\Lambda BV)$ is positive if Tu is increasing whenever u is increasing.

Definition 5.1. Let Φ be a subgroup of Θ. A Φ-value is a projection P from ΛBV onto $F \Lambda$ which fulfills the following conditions:

$$\|Pu\| \leq \|u\|, \quad u \in \Lambda BV. \quad (2)$$

$$Pu(I) = u(I), \quad u \text{ in } \Lambda BV. \quad (3)$$

$$PT_\pi = T_\pi P \quad \text{for all } \pi \text{ in } \Phi. \quad (4)$$

Definition 5.2. For each finite partition D of I into members of C, $\Gamma_\Lambda = \{\Gamma_\Lambda(D)\}$ is the set of all T in $L(\Lambda BV)$ for which

$$Tu(I) = u(I) \quad \text{for } u \text{ in } \Lambda BV; \quad (5)$$

$$\|Tu\| \leq \|u\|, \quad u \in \Lambda BV; \quad (6)$$

Tu is additive on the algebra of sets determined by D;

$$Tu(B) = u(B) \quad \text{for } u \text{ in } F \Lambda, \ B \text{ in } D. \quad (7)$$

Lemma 5.3. No set $\Gamma_\Lambda(D)$ is empty.

Proof: Suppose $D = \{D_1, D_2, \ldots, D_k\}$ (any order). Let $E_0 = \phi$, $E_1 = D_1$, \ldots, $E_n = D_1 \cup D_2 \cup \ldots \cup D_n$, \ldots, $E_k = I$. For each D_j in C let d_{D_j} be the function

$$d_{D_j}(A) = \begin{cases} \lambda_i & \text{if } D_j \subseteq A \\ 0 & \text{otherwise.} \end{cases}$$

Define Q_D from ΛBV into ΛBV by

$$Q_D = \sum_{j=1}^k \left(u(E_j) - u(E_{j-1}) \right) d_{D_j}. \quad (8)$$

It is clear that Q_D is linear and satisfied (5) since the sum for $Q_D(I)$ collapses to $u(I)$. Since each d_{D_j} is increasing, and each coefficient is positive when V is increasing it follows that Q_D is positive. If $u = u^+ - u^-$ when u^+ and u^- are increasing and $\|u\| = u^+(I) - u^-(I)$ we have

$$\|Q_D\| \leq \|Q_D u^+\| + \|Q_D u^-\| = Q_D u^+(I) + Q_D u^-(I) = u^+(I) + u^-(I) = \|u\|. \quad (9)$$
Thus (6) is valid. We omit the straightforward arguments which show Q_D satisfies (6) and (7). Now with a similar proposition 2.2 and theorem 2.3 of [5], one can prove that

Theorem 5.4. There exists a projection Q from ΛBV onto FA satisfying (2) and (3).

Theorem 5.5. If Φ is a locally finite subgroup there is a Φ–value P from ΛBV onto FA.

Acknowledgements- The authors express their sincere thanks to Professor Fabio Maccheroni and Professor William H. Ruckle for their valuable suggestions and comments which led to the improvement of this paper.

REFERENCES