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Abstract — The problem of discrimination between two stationary AR(p) plus noise processes is considered
when the noise process are different in two models. The discrimination rule leads to a quadratic form with
cumbersome matrices. An approximate and analytic form is given to distribution of the discriminant. The
simulation study has been used to show the performance of discrimination rule. The cumulants of
discriminant function are obtained and show them to be very close to the true values given in literature.
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1. INTRODUCTION

Discrimination of time series data is an important area with applications in various disciplines. In
cardiology, where electrocardiographics (ECGs) signals taken from different patients are classified to a
particular type of patient. In seismology, the general problem of interest is in distinguishing the
underground nuclear explosions from natural earthquakes ([1-4]).

Detecting a signal embedded in a noise series is also an important technique in statistical pattern
recognition. Some other applications are in biology and developmental psychology (see [5, 6] and therein
references for some more applications).

The majority of works in time series discrimination, however, is devoted to considering ARMA
processes which can be expressed as a linear combination of white noise processes [7]. Recently, much
attention has been paid to other processes. However, these approaches usually lead to numerical methods
instead of analytic methods [8-11].

The log-likelihood ratio is usually considered as an appropriate criterion to discriminate between the
two models. For Gaussian models, the discrimnant function is expressed in terms of a linear combination
of independent chi-square random variables, each with one degree of freedom. The coefficients are the
eigenvalues of a matrix based on the covariance matrices for the two models. The eigenvluaes are
calculated numerically. Chan et al. [12] gave an approximate analytic solution for the coefficients in
ARMA processes. This was followed by Chinipardaz [13] for an autoregressive model of order one,
AR(1), with an extra noise and again extended for autoregressive model of order p, AR(p), with an extra
noise in [14]. In the two latter papers it is assumed that the extra noises are the same for the two
competition models.

In this article the discrimination has been considered for AR(p) models with these different extra
noises for the competition models. To give a motivation example, assume that a missile fired from a
submarine is tracked using the observations taken from the satellite observations,y,, which include an
extra noise with the actual position of the missile. The problem of interest is to allocate the actual position,
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z,, of the missile to one of two competition AR(p) models. However, the obtained observations are

e
collected by different radars.

This article is organized as follows: In the next section we present our method as well as some
primary results required in the next section. In section three the discriminant rule based on log-likelihood
ratio is given. In the forth section a simulation study has been done to show the performance of the
criterion given in section three. The distribution of the discriminant function is studied in section five.
Finally, in the last section the first four cumulants of the discriminant function are obtained and compared

with those given in numerical methods in classical approaches.

2. DISCRIMINATION BETWEEN TWO AR(p) PLUS NOISES MODELS

Consider an observed time series vector, y = (y,,y,,....y,)" to be classified, to one of two models
H, (i =1,2) where
H y,=z,+ey

T =y g tar, y e tag,r, 4y,

and
H ,y ,=x,+ey, (1
=0, 0,1yt + Bpr,—p'i'nzt
such that
y|H, ~ N(O,X,)
y|H, ~ N(O,X,)
and
_ 2 2 _ 2 2
r = UU12(‘+0611’ r,= Uﬁgzﬂ_‘_a%l 2)

Where X and X, are covariance matrices of AR(p) with parameters @ = (a,a,,...a))
B=(8,:8y:8,) respectively, and I is identity matrix of dimension T. We assume that ¢, and 7, are
2 2

and o

€ i

uncorrelated white noise disturbances with mean zero and variances o respectively for : = 1,2,

and cov(e,,n,) =0, forall ¢ and 7.
The probability density function n = (7,,7,,...,n, ) under hypothesis H is:

T T
Y 1
2\ _ 2\ 2 _ 2
p(n|0n] ) = (27“7711 ) exp —202 ;nt
™ T

Transforming from { n, } to { z, } , with Jacobin=1, the conditional probability density of x conditional
on x = (5”17;7"-"5”717370) under hypothesis H, is:

- 1< >
2 _ 2 ) 2 _ _ e
plx | o Xq | = |2m0o; exp g (l’t T, Otht_p)
h h 20>
o =1

With some manipulations
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P T+i — P T+i

071 i=o t=i+1 i=o j=i t j+1

(2%0711) 2 exp —#[X’B

M

2p+1,ax]

B is the band matrix of dimension T of band width (2p+1) defined by

2p+1lLa

Therefore, y | H, ~N(0, o BQI}HQ +o I) and y | H, - N(0, 0” sz+1ﬂ +0 I)

The properties of this band rnatrlx have been studied in [15].

The band matrix of order 2p+1 can be approximated with a polynomial of order 3, B,. 1. e

Byiia = EC B,

-1 -

2 2 L+J Z
doal o w i+ Z Z T D

141

4)

)

1
Where [B;]. = . and the coefficients, ¢, (j=0,1,...,p), have to be obtained from the

Y 0 otherwise
structure of the covariance matrix. The rth eigenvalue of band matrix B, is

A, = —2cos '
T+1

and the rth normalized eigenvector associated with ), denoted by & , is given by

T+1 T+1 T+1 T+1

g = |2 {sm T sin—2T_sin T”} (r=1..,T) [13]

The T x T symmetric matrix of eigenvectors is L = (§,&,,....,&;) .

3. DISCRIMINATION BASED ON LIKELIHOOD RATIO

The log-likelihood ratio discriminant function, is

1z -
LLR:—51| +— (2 -2y
L ‘QI—&—UB
- ‘

2p+1la

2
I+o BQp-‘rl[f‘

]. 2 -1
+2 \( I+0° B2p+13) (UI+U B2p+la) 1}’-

Weassign y to H, if LLR >0, 1i.e.

(6)
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5 B 1 ) - ‘a I+ 0‘ B2p ‘la
V|2 T+ Byl ) — (P40t Bl, ) |y 2=
‘ I+07 B2p+l 3‘

and to H, otherwise. Now, we have this theorem:
Theorem: The log-likelihood ratio is approximated by

T

H Vir T

LLR = —lln r=L +lz 11 z,?
2 ﬁ 2 r=1 ‘/27‘ ‘/17'

Where
!
V. =% + o2 c.| —2cos n
1r g m ];0 J T +1
-1
V,, = 052 +UT]2 ]Z:%dj —2cos T+1
and

-l el

where c; and d; are obtained from the structure of B andB, ., ,, respectively.

2p+1,a

Proof: Appendix

Therefore, by discrimination rule we assign'y to H | if

Z VL — L 22 >1n ;
r=10"2r 1r H V.?r
r=1
3.1. Some special cases and generalizations
AR(1) process without observed noise and 01 =0’ =0°.

m n

In this case we have:c, =1+ a’,¢, =a and d, =1+ 3%,d, = 8

-1
rm

+1

Vi :a?] 14 o? — 2acos

r

-1
T

14 32 —25005T+1

r

_ 2
V2 _Un

Therefore, the discrimination rule leads to assigny to H, if
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T rT
T T H1+ﬂ272ﬂCOST+1
ﬁ—az B+ a—2cos z?,zlnr:1
o> 3 T+1 T ) rT
g H 1+ o — 2 cos
r=1 +1

and to H,, otherwise. This conclusion has been obtained by Chan et al. [12].

AR(1) process with equal observed noise.

Consider the discrimination between two AR(1) processes with the same observation noise or equal
variance noises. We have ¢, =1+ a’,c; = a and d, =1+ °,d, = 3 so

-1
rm
T+J

V. 1+ a® — 2acos

2 2
1T_06+Uﬂ

and

-1
T
V. 1+ 5% —28cos
? S T+J

— 0,2 +O’2
€ n

Discrimination rule will be obtained by putting this quantity in (11). This has been obtained in [13].
Our approach may be generalized for non stationary ARI(p, d) models. Let
H

10T =T taaT, st o, Ay,

Hy:x =0z, 1+0,x, o+ + ﬁpmt—p"'nzt

and y, = (1 — B)'z,, where B is the backward shift, we have

—_—
o &
—_—

)

@]

@]

@]

—_—
I >~ 0 2
— ~—_—
O
@]
8
i

<
S
(]
[e]
0]
\
—
—_
]
S
|
—
w X
SN————
—
T
|
ISH
SN—————
—
o
SN——————
o]
8
~

d d
o) o) e — e
d—1 )
In fact, y = Wx where the (i, j) th element of the matrix for difference is

d o
[i—j](_l)” i= G+ Lt d

o otherwise.

(W], =

i,

It can be shown that inverse matrix is given as

1>

i—j4+d—1
d—1

[W—l] =
o otherwise [16}.

Y
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y ~ N(o,wzw’)

Under this transformation whit Jacobin=1, the log-likelihood is

1 |W21W| 1, n-1 nN—1
LLR = —=In sy (WEW) T — (WE W) )y

2 |we,w| 2
[,

2 H‘GQWB71 W

Ny 2p+1,0
1

(W W (o we W

and assign y to H, if

y/

-1 ~1
] (e v

‘ 2 WB,l W
o

2p+13
2 -1 ’
1 ‘ g WBQ;H—LQW
o+ n-1 -1 _ - n-1 -1 h
y e (W) B, ., ;W > (W) "'By, ., ,W |ly=>In C2WEBLl W
7y m 7 2p+1,8
2 j
1 1 S 1 1 1 - 1 07/1 ;B&a
! Nn— J — N— J _ =
v |5 (W) 'Y By ;W — — (W) 'Y B, Wy >1n
o j=1 o j=1 2

and to H, otherwise.

4. NUMERICAL STUDY

The performance of the discrimination function can be studied by the numerical methods. For models
AR(1) and AR(2) the misclassification rate was investigated by simulation.

Two hundred time series each of length one hundred were simulated from H, . Then each time series
was allocated to H, or H, according to (11). The number of misclassified observations was calculated.
The results are given in Tables 1 and 2 for AR(1) plus noise and AR(2) plus noise processes, respectively.
The model and observation noises also allowed to take different values. The results show that the method
works well.

Table 1. The number of misclassifications for the discrimination between two AR(1) processes
plus noise for some different values of o and 3 and various variances

(o, 8) —
s 4 (-0.2,-0.6) (0.3,0.5) (0.2,-0.2) (-0.1,-0.8) (0.2,0.9)
(07,1 ) 07,2 7051 ) 052 ) l

(1,1,0,0) 5 26 7 0 0
(2,2,0,0) 2 31 7 0 0
(1,2,0,0) 0 2 0 0 0
(LLLI) 0 0 35 0 0
(1,1,2.,2) 0 0 44 0 0
(1,1,1,2) 0 0 10 0 0
(1,1,3,1) 0 0 3 0 0
(1,2,1,2) 0 0 1 0 0
(1,10,1,1) 0 0 0 0 0
(1,1,1,10) 0 0 0 0 87
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Table 2. The number of misclassifications for the discrimination between two AR(2) processes plus

noise for some different values of oy, and (3,3, and various variances

(@, 0,81, 0) = (10222 | (-20-1-2-2) | (-2-.1,2,-1) | (-3,-2,3,2) | (3,-3,-2,-4)
(08,00 |
(1,1,0,0) 17 2 8 20 0
(2,2,0,0) 29 0 2 17 0
(3,3,0,0) 17 1 4 19 0
(1,2,0,0) 22 3 1 11 25
(2,1,0,0) 0 1 0 0 0
(LLLD) 25 15 34 81 20
(1,1,2.2) 74 58 68 98 58
(1,1,1,2) 32 20 17 37 61
(1,1.2,1) 0 0 0 0 0
(12,1,2) 3 2 2 2 3
2,1.2,1) 0 0 0 0 0
(3,1,3,1) 0 0 0 0 0
(1,51,1) 0 0 0 0 0
(1,1,1,5) 0 0 0 0 0

As can be seen from Table 1 and 2 the results may be worse in the case of the parameters in the two
models are close. Also, the misclassification rate is large if the variances of observation errors, o; and
052 are large, especially if the second population is large. In the case of af} = ai = 0, the results are
similar with those given in [12] as was expected.

5. DISCRIMINATION OF DISCRIMINANT FUNCTION

Suppose that Y = (Y,,Y,,...,Y;)" is a vector time series from H, , then

L tm
ZYt sin
i1 T+1

T . 2t
2 ZYt sin
Pt . T+1

T

Tt
ZYt sin T
) T+1

using the normality of Y and the independence of elements of Z, Z = (Z,,...,Z )" has a multivariate
normal distribution with zero mean vector and diagonal covariance matrix with (r,7) th element

-1

P J
T
E cj[—Zcos[ H
20 T+1

‘/'1 — 0_2 4 0_2
" & h

Therefore,

Where 7 is the chi-square random variable with one degree of freedom.
From (8), ignoring the constant term, the discriminate function is
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d,(z) = — |2 = I
Q T 1,r
r=1 VQT‘ Vlr r=1 ‘/27‘

Hence under H, the discriminant function has a linear combination of chi-square random variable
with one degree of freedom with rth coefficient

P - it
Uf —1-02] Cj[—QCOS[T_'_l}]
V “1 U i “
dr_q|= =0 ~1 (12)
VQT‘ p r J -t
o’ +o° Zd. —2cos
& T 20 J T+1
by a similar manner, if Y belongs to H, then
-1
P vV
o’ +o? Zd,- —2cos
T v & Ll Bt J T +1
do(z) =Y |1 - 2207, = |1- ‘ —— X7, (13)
r=1 1r r=1 p r J
oz —&-af] cj[—2cos[ ]]
1 1 ]:0 T + 1

6. COMPARING THE CUMULANTS OF DISCRIMINANT FUNCTION:
ANALYTICAL VERSUS NUMERICAL METHODS

As was shown, the quadratic distribution of the discriminant function leads to

T
dQ (x)= Z )\Txir
r=1

where A; is given in (12) or (13) based on the observations taken from H, or H,, respectively. Many
authors have tried to tabulate this distribution function [17, 18]. They consider j>0, T = 5, which is not
the case of time series where j can be positive or negative. An alternative method is based on Pearson
curves given in [19] and [20]. In this method the true density function is approximated by equating the
first four cumulants. Solomon and Stephens [20] showed that the sth cumulant is given by

Ry (d(x)) =2""(s — 1)!iA;

These are derived using the classical method, i.e.
. 1 _ _ .
A, = eigenvalues ?):j(i‘,2 t—xh), j=12.

where X, is the covariance matrix of jth model [13]. A numerical comparison between the classical
methods and the method given in this paper has been considered for the first four cumulants. AR(1) plus
noise model AR(2) plus noise model are given in Table 3 and Table 4, respectively. The various values of
parameters and variances are considered for T=100. It should be mentioned that results given in [13] and
[14] may be included in our results, considering the same observation errors.

The numerical comparison shows that our method agrees well with the classical methods being close,
especially when the parameter values are large with different signs.
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Table 3. Comparison of the first four cumulants of dQ (x) approximated by different
methods for AR(1) plus noise processes (02 ,02 ,0° 703 )
1 2 & 2
(a,p)¥ Method | (1,1,0,0) | (5,5,0,0) | (5,1,0,0) | (LL,L,1) | (1,1,5,5) | (1,1,2,1) | (2,1,2,1)
K 1 3.999x 1072 3.999x107? 4.199 1.79x107 1.675x107 | 2.162x1072 | 3.008x10™"
! 11 4246x107 | 4.246x10°7 4212 1.656x107 | 1.622x107° | 4854107 | 9.668x107"
K 1 1552x10° | 1552x107° | 3.907x107t | 4.584x10™ | 8.236x107° | 2.486x10™* | 1.990x107
(0.2,0.4) 2 11 1548x107° | 1548x107° | 3.926x107 | 4546x107 | 8143x10° | 6344107 | 2.049x107
K 1 2.812x107 | 2.812x107 7.753x 1072 3.176x10°° 3.618x107 1.608x10°° 2.739x10°
3 11 5266107 | 55705107 | 7800x107% | 3.117x10° | 3.563x10 1.747x107 9.137x10™"
K 1 4389x107 | 4.389x1077 2.399x10°° 6.464x10° | 1.064x107° 2314x10°* 5.762x107
4 II 4369x107 | 43695107 2.415x10°? 6.373x10° | 9.995x107° 7.441x10°° 6.286x10°°
K 1 1.320 1.320 10.600 3.17x107 | 4.192x107 | 1.480x107" | 6.448x107
1 11 1311 1311 10.555 3.089x10" | 4.146x10° | g133x10" | 1618
K 1 1.806x10™ 1.806x10™ 5.890 1.987x107 1.822x107 | 7.644x10°° 3.104x107
(_0.5’0_5) 2 11 1.791x10™ 1.791x10™ 5.845 1.966x107* 1.801x107 | 3.690x102 | 1.234x107
K 1 4420107 4.420%1072 7.997 1.299x107° 1.857x10°° 2.538x107 2.862x107
3 11 4375x107 | 43761072 7.821 1.282x10° | 1.831x107° 3.441x107 2.198x10
K 1 1.800x107 1.800x1072 17.691 1.709x10™ | 9.953x107 2.164x107° 4.469%107*
4 II L780x107 | | 2e0 102 17.504 1.686x10™ | 9.807x10” | 5.401x107* 6.459x10°
K 1 2.659%x107" 2.659%10°" 5.330 2.263x107 7.101x1072 5.807x1072 2.361x107"
1 11 2.775x107" 2.775%10"" 5.387 1.540x1072 6.631x1072 5.096x107" 9.692x10™"
K 1 9.119x107 9.119x10° 7.607 x107" 2.491x107° 1.149x107° 1.833x107° 3.635x107°
(—0308) 2 11 9.097x107° | 9097x10° | 7.694x107" | 2:410x107 | 1.904x107 | 1194x102 | 2.841x107
.I,U. .
K 1 1.377x107* 1.377x10™* 2.289x107" 5277x10°° 2.711x107° 4.485x10° 1.929x10°°
3 11 1.441x107 1.441x10™ 2.316x10™" 4.984x107° | 2.559x107° 3.404x107 1.484x107
K 1 1.417x10° 1.417x10° 1.065x107" 2.677x10° | 1.064x107° 2.015x10°° 2.170x10°°
4 10 1.412x107° 1.412x10° 1.078x107" 2.536x10°° | 9.995x10°° 2.236x107° 1.258x107*
Table 4. Comparison of the first four cumulants of dQ (x) approximated by different
. 2 2 2 2
methods for AR(2) plus noise processes (O‘,71 1,0, ,0. ,0, )
1
(a,,0,,0,,5,) Method | (1,1,0,0) | (5,5,0,0) | (51,000 | (L,L,L1) | (1,155 | (1,1,2,1) | (2,1,2,1)
K I 1.005x107 1.005x1072 4.050 5.659x107° | 5.746x107° 4.506 8.943
1 I 1.084x107 | 1.084x107 4.054 5.103x107 | 5.484x107 4521 8.949
K I 4.107x10™ | 4.107x10* | 3.383x107" | 1.405x10™ | 2.397x10° | 4.254x10”' L1614
(-0.1,-0.2,-0.2,-0.2) 2 il 4039x10* | 4.039x10" | 3388x10" | 1376x10™* | 2343x10° | 4279x 10" L.615
K I 1.058x107 1.058x1077 5.804x107 3.996x107 5.061x107* 8.275x107° 5.870x107"
3 11 7.278x10" | 7.274x107 5.812x1072 3.851x1077 4.906x107" 8.342x1072 | 5.878x10™
K 1 4.148x10° 4.148x10°™* 1.528x107? 6.745x107° | 2.846x107"° 2.462x107 3.226x10™
4 11 4.056x10°° 4.056x107° 1.530%x1072 6.558x107° | 2.763x107° 2.487x1072 3.231x10™
K 1 2.151x10™" 2.151x10™ 5.076 4.861x107° 5.665x107° 4.545 9.486
1 11 2.120x10" | 2.120x10" 5.060 4701x107% | 5.102x10° 4541 9470
(-0.2,-0.5,0.2,0.1)
RS A K 1 1.412x1072 | 1.412x107 | 8.452x107" | 2379x107 | 2258x107* | 4.336x107" 2.033
2 I 1.408x107 | 1.408x107 | 8416x10~ | 2374x107 | 2257x10™* | 4330x10" 2.027
K 1 7.902x10* | 7.902x107* 3.607x107" 4.055x10° 8.510x1077 8.682x107" 9.751x10™
3 11 7.862x107 | 7.862x107* 3.592x107" 4.023x10° | 8.409x1077 8.666x1072 | 9.712x10"!
K 1 8.529x10°° 8.529x10° 2.550%x107" 1.819x10°° 1.317x10°* 2.726x107* 7.662x107"
4 11 8.489x10°° 8.490x10°° 2.538x107" 1.809%x107¢ 1.311x10°® 2.720x107* 7.627x107
K I 2.923x107" | 2.923x107" 5.461 1.238x107" 2.616x1072 4.666 10.238
1 I 2.844x107" | 2.844x10" 5.422 1202x10" | 2.552x10°2 4.693 10202
% | 1.788x102 | 1.788x102 | 1.001 6.417x107 | 1.106x107 | 4.851x107" 2.707
(0.3,-0.3,-0.2,-0.4) 2 I L713x1072 | 1713x102 | 9.757x107 | 6.149x10° | 1.060x10° | 4.895x10" 2.668
R K I 1324x107 | 1.324x10° | 4.873x10" | 2.565x10* | 1.038x10° | 1.047x10"" 1773
3 11 1254x107° | 1.254x10° | 4.681x10" | 2435x10°* | 9.873x10° | 1.059x10”" 1.724
P 1 2.060x10™ 2.060x107 4208x107" 2.686x107 | 6.908x107 3.454x107 2.059
4 11 1944510 | 1944x10% | 2004x10" | 2.545x10° | 6558x107 | 349810 1981
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7. APPENDIX: PROOF FOR THEOREM

Applying the transformation z = Ly to (6) leads us to

|o21+0, LB, L]

LLR———ln
2 |ol1+0, LB, L]

+%z’[( 1+c2 LB}, L) -(c21+07 LB;,ML')’I]Z

Note that L is an orthogonal matrix. By considering the other properties of L. which are given in [13],

we have:

[( 21+02 LB L) - (02 1+02 LB;pML')“Jz
1 -1 1 -1
P ) p :
=7 0521+052L[Zij3'] L'| - a;1+ale[chB;j L'| |z
j=0 i=0

-1 N

p Y _
=z’ 0'521+0'§2(Zdj(LB;L')J - afll-i-a;[ c,(LBL) z
j=0

I

Il
f=}

]

—17]

-1
j
CJA3J V4

-1

=z 2IJra (Zd A‘j - 2I+O'l[

Mv

Il
(=]

]

where A, is a diagonal matrix with rth diagonal element

ﬂr :[A3]r,r :_2005( & j

T+1

hence
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- -1

-1
p
2 2 i
0-51 + 0-'71 [Z Cjil J ° °

j=0

-y : - : Z

r=1

r
considering A, =—-2cos ad
T+1

j we have:

il 1 1
:Z -1 | o Zr2

r=I1 p r J p r !
o, +o,|>.d, —2005( . j ol +ol|Dc —2cos( « j
’ j=0 T+1 : : i=0 T+1

5

In order to abbreviate, let

V, =0’ +0. iC- “2cos| = F | V, =0’ +0o; Zp:d- “2cos| = F |
1 M J T+1 2 M| 4 J T+1

=0

s0 we have
o R A R SRR Py P
Similarly, we can write
(e21+02 LB, L)) = ll[vlr

and

(o2 1+02 LB, L)) = V.
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o ®° =2
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19.

20.
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[I\Z
r=1

‘O'SZII+0',§ILB_1 L" )

2 p+l,a
=In ; ; — = = In—
o2 1+0, LB, | V.
r=1
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