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Abstract — In this paper, we investigate the canonical property of solutions of a system of differential
equations having a singularity and turning point of even order. First, by a replacement, we transform the
system to the Sturm-Liouville equation with a turning point. Using the asymptotic estimates for a specia
fundamental system of solutions of Sturm-Liouville equation, we study the infinite product representation of
solutions of the system and investigate the uniqueness of the solution for the dual equations of the Sturm-
Liouville equation. Then, we transform the Sturm-Liouville equation with a turning point to the equation with
a singularity, and study the asymptotic behavior of its solutions. Such representations are relevant to the
inverse spectral problem.
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1. INTRODUCTION

We consider the following system of differential equations

&1
d CR(t) | dt

- p(t)
[' pPR,(1) +m]y , te[0] ()

with initid conditions x(0, 0) =0, y(0,p) =1, where p is the spectral parameter, R, R,, p(t) are
bounded and integrablein | =[0,]] and R, (t) hasone zeroinsidetheinterval | of even order.

System (1) is a canonical form for many problems in natural sciences. For example, for a wide class
of problems describing the propagation of electromagnetic waves in a stratified medium, Maxwell’s
equations can be reduced to the canonical form (1) (see [1]). System (1) often appears in optics,
spectroscopy and acoustic problems. System (1) also appears for the design of directional couplers for
heterogeneous electronic lines, which constitute one of the most important classes of radio physical
synthesis problems (see [2], [1]). Some aspects of synthesis problems for system (1) with
R =R, =R>0 were studied in [3] and other works. Inverse problem for system (1) with the initial
conditions X(0, p) =1, Yy(0,p)=-1 and with R> 0 were studied in [4, 5]. In [6], the authors studied
the eigenvalues and derived a formula for the asymptotic distribution of the eigenvalues in the case when
the system (1) has arbitrary order singularities and turning points inside the interval [0, T].

The importance of asymptotic analysis in obtaining information on the solution of a Sturm-Liouville
equation with multiple turning points was realized by Olver [7] and Eberhard, Freiling and Schneider in
[8]. Also, the inverse problem for Sturm-Liouville equation with turning points were studied by Freiling
and Yurko in [5]. In [9], the asymptotic estimates for a special fundamental system of solutions of the
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72 A. Neamaty / S. Mosazadeh

corresponding differential equation and determining the asymptotic distribution of the eigenvalues with
several singularities or/and turning points inside the interval [0, 1] were studied by Eberhard, Freiling and
Wilchen. The results of Kazarinoff [10], Langer [11] and Olver [7] bring important innovations to the
asymptotic approximation of solution of Sturm-Liouville equations with two turning points. Also in [12],
the infinite product representation of solution of the equation with one turning point of odd order was
obtained and the authors derived the associate dual equations by thisinfinite product form of solution. It is
necessary to point out that applying asymptotic solutions for studying inverse problem in turning points
cases, is more complicated and, practically, is not convenient to use. Especialy in deriving the asymptotic
formulas, one should apply Bessel function type. In addition, a more difficult and challenging task is to
shape the asymptotic behavior of the solutions and corresponding eigenvalues. So the inverse problem of
reconstructing the potential function from the given spectral information and corresponding dual equation
cannot be studied by using the asymptotic forms. In fact, in asymptotic methods one cannot generally
express the exact solution in closed form. Indeed, in methods connected with dual equations, the closed
form of the solution is needed. The representing solution of the infinite product form plays an important
role for investigating the corresponding dual equations. We mention that some aspects of the inverse
problem with a singularity were studied in [13], a'so some aspects of the inverse problem with turning
points were studied in [14] and other works connected with ideas of the dual equation method. In the
previous article [15], the authors considered the following Sturm-Liouville equation

W+ (A1-22) —p()w=0, —w<a<z<l @)

with dirichlet boundary conditions w(a) = w(z) = 0, where the function /(z) is continuous, —1¢ (a, )
and A is the spectral parameter, also the weight function (the coefficient of A4 in (2)) has two turning
points z=+1 of oddorder. For 0 < z<1, the solution W(A, ) of such an equation (2) with an initial

condition w(4,a) =0, ZWM’ a) =1 was found to have the infinite product form

Z

WL, 2) = fazii)m(—l)1 1—[(ﬂu—vn(.zz))p (—1)H(rn(z)—.2/1)f (z)’
dize t(a2-1* ™ -

n>1 J'n

where the sequence {rn(z)}nﬂ represents the sequence of positive eigenvalues, and {vn(z)}nZl the
sequence of negative eigenvalues of the dirichlet problem associated with (2) on [a,Z], for each z in
(0D, and

1

f(2) = %—E(l—gz)zdg, 0<z<1,

p(-1) = [ (> -1,

and j,, n=123..., arethe positive zeros of J;(2).

In this paper, first, we transform (1) to the Sturm-Liouville equation with turning point of even order,
then we define a fundamental system of solutions (FSS) of the equation when |p| — oo (see section 2).
Using these asymptotic solutions we derive aformulafor the asymptotic distribution of the eigenvalues (in
section 4). Further, we obtain the infinite product representation of solutions (see section 5), derive the
associate dual equations by this infinite product form of solutions, and investigate the uniqueness solution
of these equations (see section 6). This paper continues the investigations made in sections 2-6. In section
7, by a replacement we transform the Sturm-Liouville equation with turning point to the equation with
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On the canonical solution and dual equations of... 73

singularity and determine the asymptotic behavior of the solution. Using the infinite representation of
solutions of section 5, the canonical representation of solutions of equation with singularity are obtained
(see section 8). Therefore, we define singularity’s and turning’ s relation by upper replacements. The other
missing cases will be treated in a future paper as they require different techniques.

2.NOTATIONSAND PRELIMINARY RESULTS

Let us consider the system of differential equation (1), where the function R, (t) = A > O is a constant
function and

R,(t) = A(t—t)* ®3)

where the coefficient A, isapositive constant and t, € (0,).

System (1) after the elimination of X reducesto the linear second-order Sturm-Liouville equation
—Y'+ p)y = A4*(1)Y, (4)
with initial conditions

y(O’ p) = l, y'(O, ,D) = 01

A

where 1 = p?® isaread parameter and ¢*(t) =—2(t—t,)* hasonezero t, in (0,1), the so called turning
Al

point. In the terminology of [8], t, isof Type Il .

Notations 2.1.

i) Let 0 > 0 befixed, sufficiently small, we define
[]=1+0(p™),as p —> o0,

where o, =1-0.

ii) For k € Z we consider the sectors

Now let C(t,4) be the solution of (4) corresponding to the initial conditions C(0, p) =1,
C'(0,p) =0. In order to represent the solution C(t,A)as an infinite product, we use a suitable
fundamental system of solutions (FSS) for Equation (4) as constructed in [8].

According to the type of t;, we know from [8, Theorem 3.2] that in the sector S ; there exists an FSS
of (4) {w,(t, p),W,(t, 0)} suchthat

¢ (t) p”(g) [ o<t<t,,

o[ ge)d ®)
\/—¢—* (t){ pf #(s)d g[ ]+§ie—lpﬁl¢(g) g[l]}, tl <t<1

w,(t, p) =
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s -ip[ g(o)d _ip[ #le)d

4 2(t){e rhee g[1]+%e”f‘l g g[l]} o<t<t,
J2

W, (t, p) =
¢ (t) e SR g <t <

That leads to the following:

i p¢% e’ o [ o<t< tl,
wi(t, p) = ol e Jrfon
e <t>{ Loss g, 32 ginfoos [11} L <t<l
,0¢% (t){—' -ip tl¢(g) g[l] 2 |pf #(s)d g[l]}' O<t< tl,
W, (t, o) = L
- g ipg? (t)e_'pf‘lm)dg [ t, <t<1.

We also need {Wl(tl,p),w2(tl,p)}. Similarly, for t =t, from [8] we have

W (t,, p) = \/;pi {e8u1 (t;, p)[1]+ e?uz (tl’p)[l]}’

W, (ty, p) = gp“ {egul(tli p)[l] - e?uz (t,, p)[l]},

where

1

U, (ty, p) = 24W3Et1) , Uy(t,p) =0,

r (Z)

where y(t,) =lim_,, ¢ 2 (t){jttl¢5(g)dg,‘}‘l1 . Consequently

1

W, (t,, p) = \/_ zltelg 24'//(t1)
3
F(4)

Wty p) = V2rpies )
241“(2)

It follows that the wronskian of FSS satisfy
W(p) =W(w (t, p), W, (t, p)) = 2ip[1],

asp—w.
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On the canonical solution and dual equations of... 75
3. ASYMPTOTIC FORM OF THE SOLUTION

We consider the differential equation (4) with the following conditions
C(,p)=1 C'(0,p)=0. (12
Applying the FSS {Wl(t,,o),w2 (t,p)} for t €[0,]] we have
C(t, p) =cw (t, p) +C,W, (t, p), (13)

in which using cramer’ srule leads to the equation

Ctt, p) = ﬁ(wz (0, )W, (¢, p) ~ W, (0, P)Wy(t, ). (149

where
W(p) = W(W11W2 )= _ZiP[l]-

Taking (5)-(8) into account, we derive

1 1
> - . 1
¢2(0)¢ z(t){COSh('PIM(G)dG)+O(p% )}, 0<t<t,
cbr)= 1.; - inf. d(e) o (e 49
= _= ip ¢)dg —lp ¢ )dg
ASL 2(t){M1(p)e ]+ My (p)e [1]} t <t<l,
where
M, (p) = ﬁeip131¢(g)dg _je el
! ’ 16
M, ( p)zieipﬁ}mg)dg +[2e7 Pl (16)
By virtue of (15) and (16), the following estimates are also valid:
1 1 1 .
~¢2(0)¢ 2 (1S UE, (¢, p), O<t<t,
Ct,p) =172 (17)

\/E 1 1

7¢5 (0)¢75 (t)eipJW(g)\dg E (t.p), t,<t<l,
where
v(t) .
E, (t,p) = zepakﬁkn( )bkn (t),
n=1

and
a,=oy=-1ay=-a_,=1,B,0)#0, 0<o<B,()<pf,t)<..<Byt)<2R (1), where
the integer-valued functions v and b,, are constant in every interval [0,t; —¢] and [t, +¢&/1] for ¢

sufficiently small and
R.(1) = E Jmax(o, 4% (5)Jds (18)
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Similarly, using (9), (10) and (14) for t =t; wefind that
1 ix

1
[Z62(0)ple® -
C, p) = Y0P 3e vhlersong

24 F(Z)

1 P). (19

In addition, differentiating (15) we calculate
1
p

ip(¢(0)¢(t))Z{Sinh(ipfécﬁ(g)dd+0( )}, O<t<t,

C'(t,p)=

%ip(qﬁ(ow(t»3{M1(p)ei”ﬁ¢‘””g - M, (ppe "L [1]}, t<ts<l

Thus, we deduce the following theorem:

Theorem 1. Let C(t, p) be the solution of (4) under the initial conditions C(0, p) =1, C’(0,p0) =0,
then the following estimates hold:

1 1

1
Clt,p)=22" 42(0)¢ 2(1)e”**E, (t,p), teD,,v=04

where D, =[0,t,) and D, = (t,,1] , aso
1 iz

1
[~ 42(0) pieb .
C(t,, p) = P (03),0 ; w(t,) Pl o) E, (t

?H?

11,0)-

4. DISTTIBUTION OF THE EIGENVALUES

We consider the boundary value problem L, =L, (p(t),#°(t),s) for Equation (4) with boundary
condition

y(O! 2’) =1, y’(O! ;L) =0, y(S! ;L) =0.

The boundary value problem L, for se(01)\ {tl} has a countable set of positive eigenvalues
{/’tn(s)}m. From (17), we have the following asymptotic distribution for each {/1“(5)} ;

2,(8) =——2-+0(). (20)

Similarly, according to (19), the spectrum {/’tn }
of positive eigenvalues

of boundary value problem L, fors=t,, consists

n>1

5z
nz—— 1
2,(t) =——3-+0(). (21)
(g "

0
Iranian Journal of Science & Technology, Trans. A, Volume 34, Number A1 Winter 2010



On the canonical solution and dual equations of... 77
5.MAIN RESULTS

Sincethe solution C(t, p) of the Sturm-Liouville equation defined by afixed set of initial conditionsisan
entire function of p for each fixed [0,]], it follows from the classical Hadamard's factorization theorem
(see [16, p. 24]) that such solution is expressible as an infinite product. For fixed Se (0,1)\{t1} by
Halvorsen's result [17], C(S,p) is an entire function of order 1. Therefore, Hadamard's theorem can

used to represent the solution in the form 2
c(s.2) =[] (1— Lj
e\ An(S)

where h(s) is a function independent of A, but may depend on s, and the infinite number of positive
eigenvalues, {/1 (s)}n _,» form the zero set of C(s,A) for each s. Let 5,,n>1, be the sequence of
positive zeros of J (t). Then (see[18, 9.5.11])

24—,12 = 1+ O(izj .
RZ (O, (1) n

Consequently, the infinite products Hzg—"z are absolutely convergent for each
se (0)\{t,}. Therefore, we may n R (04, (1)
C(s,z)=h(s)H(1——j (@[ O-AR) @)
n>1 2’ ( ) n>1 é/n
with
h(s)=h)] [ 3= (23)

n21 R2( )/1 (s)

Theorem 2. Let C(t, 4) be the solution of (4) satisfying theinitial conditions C(0,4) =1, C'(0,1) =0.
Thenforte A, v=0]1

Cls) =22 g2 () (t)H (4 (1) Cﬂ)R (t)

where A, =(0,t,), A =), R ()= J.:)\/max%o,¢2(s) }ds, ¢.,,N>1, is the sequence of positive
zeros of J7, the sequence A, (t),n>1, represents the sequence of positive eigenvalues of the boundary
value problem L, on [0,t].

Proof: Let A,(S) be the eigenvalues of the boundary value problem L, on[0O,s| for fixed s=t,te A,
then according to [18, 9.5.11, 10.1.1, 10.1.11], we have

A1) - AR (t
H( o (1) 2) s (1)

n>1 n

= 2cos(~/AR, ()],

as A — . Thusfrom (17) and (22), we obtain
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78 A. Neamaty / S. Mosazadeh

C(t.4) YN
(A, (1) - DR%() ¢°(0)¢ *(1).
s

We can proceed similarly for s =t, by Hadamard's theorem to obtain

A
C(t,,A) = AH(l— i (tl)j’

n>1

h,(t) =

where A isconstant. Let j,, N>1, be the sequence of positive zerosof J} , then (see[18, 9.5.11])

=1y O(izj )
R+ (tl)ﬂ’n (tl) n

£ 2
and so the infinite product HZJ—” =1+ O[izj is absolutely convergent. Consequently we
may write as before, RC(t) 4, (L) n

A, (t) - )R (t
H( (t)-4) ()

n>1 J n

C(tliﬂ”) = A1 (24)

R? (tl)/1 (t)

Theorem 3. For s=t,,

where A = A] |

C(tl,/i)__¢ (O)R4 () (t, )H (4, () - /1)R (t, )

n>1 n

where R, (t) = J‘w/max%o @ (s)gds j,» N=212,..., is the sequence of positive zeros of J/, th

sequence A, (t,), n>1, represents the sequence of positive eigenvalues of the boundary value plﬂoblem
1

L, on [0,t,] and y(t,) = lim,_, ¢ > ¢ (s)ds} :

Proof: According to [17] the infinite product

A, () - DR (L,
H( ()J) ()

isan entire function of A, whose roots are precisely A4,(t,), n>1. From[1, 9.2.11] we have

Jv!(z) = \/%{— R(v,z)sin y — S(v, 2) COS;(},

where v isfixed and
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& W16k -1 (v,2K)
R(V,Z)~§( g 4V2_(4k+1)21(22)2k}
_q_ u=D(u+19

2(82)°

& AP A2k D)7 -1 (v,2K)
S(V,z)~;< Y T ke 1(22)2“}

_HF3 (=D -9 (u+35)
8z 3(82)°

1
as |4 — oo, where = 4v?. Now, by inserting z=R_(t,)VA , v :Z,and from [18, 9.5.11], we get

[0 = DR) _ \E bR (tl)ﬁ}ir(%) cos(R_(t, W7 + %)[1].

2
n>1 J n

Thusit follows from (19) and (23):

~ C(t,, 1) 1 P
A = Uot) - DRL) 2¢ O)R* (t)w(t,) .
50

6. DUAL EQUATIONS

In this section, we first derive the dual equations associated with (4) by use of infinite product
representation, then we investigate the uniqueness solution of these equations.

By the implicit function theorem, A (t) is twice continuously differentiable functions. For
te(0D\ {tl}, the condition

C(t,1,(t)) =0,

gives, asusual,

L L5, (29
ot oA

and differentiating again

2 2 2
8(23+26 C.z;+af.(/1;)2+§.,1;':o. (26)
ot otoA oA oA
Thefirsttermin (26) iszero at (t, 4, (t)) by virtue of (4). Thus
2 2
0C v 9 a2+ -0, 27)
otod oA oA

If we make use of the infinite product form of C(t,1), substitute this in (27), in the case
te(01)\{t,} the dual of the equation (4) will be obtained. Indeed, we need the various derivatives of
C(t,A) at thepoints (t, 1, (t)) for t e (OD\ {t,}.
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Now, we first calculate the various derivatives of C(t,1) for t € (0,2) \ {tl}. From (22), it can be
written

C(t,A) = h(t)H(l— ﬂ’( )j (28)

where h isafunction independent of A . By using (23) and Theorem 2, we obtain

2

h, = 22" ¢ O)¢ (t) hH Rz(t)ﬂ 0

where ¢, ,k >1, is the sequence of positive zeros of J/ (t), the sequence A, (t),k>1, represents the
sequence of positive eigenvalues of the boundary value problem L, on [0,t] and R (t) is determined in
(18). Therefore,

4 R*(t)A, (t
=27 2O [ OO 29)
o1 Gy
oC o°C o°C 0°C
We calculate —, and at the points (t, 4, (t)) by using (28). In determinin , the
o1 o X gy A tepoints (A4, (1)) by using (28 9 aaat
interchange of summation and differentiation in
d A
log(1—- )
dt & Ay (1)
isvalid, because by the results of [19], the differentiated series
> — A A (D)
o (i (1) = 2,) A4 ()
isuniformly convergent. We define F,, by
A (1)
F,=F,tA,@1)= (1— - J (30)
kﬂﬂ A, (t)
Since
Lo (15 )
=AM el A
we have
oC —-hF,
— 4,1) = .
oA A, (1)
2 -1
PC a0y =2y L[y A0
oA A 0) i A A ()
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' I -1
8&81: ﬂ’n (t) ﬂ’n i#n,i>1 ﬂq ﬁ’i (t)
h(t)F.4 A (t)
"/ n%n 1—
ﬂ’n Ii;l [ /I’l (t)
Placing these terms into (27), we obtain
" rar ! -1 2
A, + 20, 22,40 D ’1—2 10 ) o) g (31)
h i#n,ix1 ﬂvi ﬂ’| (t) ﬂn

Dividing the above equation by A, and integrating from a fixed number « #0 up to t, for
t € (0,t;) weobtain
! An (t)/i'(a)h (a) a25(tA)

A, (t : 32
2 (1) = 22 ()hE () (32)

where

S, (t,4,) = zj "(z ~2,) dv, (33)

I#n

and h(t) isdetermined in (29). Similarly, for t € (t,,1), dividing the equation (31) by A/ and integrating
from t up tol, we obtain

/1’(t) A2 Mh? () 2 (tA)
n .2 (t)

(34
where
T (t,4,)= Zj ”(ﬂ, ~2,) tdo. (35)

1N

The system of equation (31) isdual to the original equation (4) and involves only the function 4, (t) .
We shall establish theinitial value problem consisting of this system of equations subject to theinitial
condition

A@=4, ((=12.).

Before investigating the uniqueness theorem, we need to prove the following lemma:

Lemmal. Let
A, =cn® —cn+0(2), (36)
where ¢ isafixed number. Then

A
> R =0(1). 37)

k#n
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Proof: we have

¢ (A — 4,) = (k* =n?) = (k—n) + O(1)
K _nz){l_ k- n+O(1)},

(<)
o
c __ k#n+#l  O@®) clk—n+0@}
A —4,) (k> =n®*)(k+n) (k*=n?*)? (kz—nz)z(ﬂk—ﬂn)’
hence
e R i e SN e L) (kz{E ;Zr;:gk(lz}zn) - @
Note that

1 k+n+1 3
Z(kz—nz) SZ(kz—nz)(k+n) SZZ(kZ—nZ)'

k#n k#n k#n

and from [20] we know that

1 3 1 1
20y ZW O

k#n k#n

Consequently, in (38), the first and second sum are O( ) while the third is O(—) Since
A, =0(n?),

C

k#n

Now we investigate the unigueness of solution of the dual equations.

Theorem 4. Theinitial value problem consisting of (34) subject to the initial condition
,Q=4,, (h=12.),
has a unique solution.

Proof: For convenience, we can write thisinitial value problem as

(iilt) =9(), @ =v={40) 4.,

where v, g aredefined as

v.=A, n=12,...,

n n

Iranian Journal of Science & Technology, Trans. A, Volume 34, Number A1 Winter 2010



On the canonical solution and dual equations of... 83

2
Hody™ () rnn

h2(t) ’ =9

g,(v)=g, =

An(@h* (@)
2 2
function ¢ satisfies in the Lipschitz condition. To this end, first we show that g, is of order O(n*).
2

where H = . In order to prove the uniqueness of a solution, it suffices to prove that the

Since from (29) and (20), h(t) is of order O(1) and A, = O(n?), hﬂ;”(t) =0(n*). Soit is enough to
prove that

e2TrI (t,4,) — O(l) ’
or equivaently we prove

T.(t4,) =0Q).

The interchange of summation and integration in T, will be valid if the differentiate series
Z%(/Ii —2,) " isuniformly convergent (which is the case, see [19]). Next, we prove that
i#n

A0 .
> 2 ~ 24) =00). (40)

i#n i

Since

([ p(e)de)? |
i HIOB i _ o
2R i

it does not influence the order of the expression (40). Consequently, by Lemma 1, the estimates for (40)
hold uniformly for t in acompact subset of (0] .
Note that (40) and (35) imply that T, (t, 1) = O(1) . We therefore conclude that €™ = O(1) , whence

g,(v) = g, =0(n").
To complete the proof, we define a normed space as follows: Let

o

<o={»=<un>r:||u||=i—z<oo},

n

and define @ < ¢ asasubset containing nonzero members of ¢ whose asymptotic distribution is of the
form

n27z2 n7r2

v, =% ¥ +0(0Q),
TR TERASC

where | isaconstant. It istrivia to see that (p* # ¢ contains the sequence {/1n }::1. Finally, g isamap
from ¢ into ¢, because g, (v) = g, = O(n*). Furthermore, ¢’ is convex space, i.e., if 0< a <1 and
o,ne@ , then ac+(L—a)n e, hence for each n, the function g, (ac + (1—a)n) is defined on
[01]. The function g,(e¢c+(@—a)n), N=>1, is an entire function with respect to « on [0]].
Consequently, for each n, we can find some «,, 0< «,, <1, such that
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9,0 - 9,(0) = 9,(0) - g, () =

Since g, isafunction of 4, we have
dg, dg,
0(0)= 00 (1) =2y = 2" (00 =) (41)
We use (39) in order to compute the coefficient dg” and obtain
R ¢ R R VX
c = f, ) R . N = du (o, =1,
9,(0) - 9, () Z{i TG LGiy }( M)

~!

, f;ftu z) o —110), (42)
where
f =0, (c,.c+1-a,)n), A,=a,0,+A-a)n,.

In the above calculation, the interchange of summation and derivation is valid since the differentiated
Al
series Z (4, — A,) 7 isuniformly convergent (see [19]). Dividing the above equation by (2n)° and

i#n

summing with respect to n, we obtain

0,(0)=9.(1) _ 3y 5170 =70l
2 My “)

n

where M is a constant number. In order to derive the inequality, we have made use of the fact that the

dependence of the vayious quantities on ¢, can beignored for large n's and that the sum > j ’17
i#n ﬂ, /1

—~=0(1). Thus, (43) give ( )’

19 (@) = 9.(7)] < Mo ~7],
where M isaconstant. Thus ¢ satisfies a Lipsschitz condition, and consequently, the equation (34) has
an unique solution.

7. THE BOUNDARY VALUE PROBLEM WITH A SINGULARITY

In this section we transform (4) by a replacement to the differential equation with a singular point and we
study the asynl1ptoti ¢ behavior of the solutions.

Denote T = IO #(c)ds .

We transform (4) by means of the replacement

2= [ 4()ds, u@) = 42OV, (44)

to the differential equation
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—u"(2) +a(29u(2) = Au(2), ze[0,T], (45)
with initial conditions

u(0,4) =r,, u'(0,4) =r,, (46)

1 -3
where r, =¢2(0), 1, = %¢ 2 (0)¢'(0), and q(2) has quadratic singularity in theinterval (0,T) and has
the form:

Z) =
q(2) e
where z, = J?(ﬁ(g)dg . We also assume that

6 (A(z-2)2 €LOT).

Since the solutions of equation (45) have singularity at z= z,, and therefore, in general, the values
of the solutions and their derivativesat z= z, are not defined.

Remark 1. In [13], fundamenta system of solutions {S((z,/I)}, k=12, of equation (45) were
constructed with the following properties: 1
i) For each fixed z€[0,T], thefunctions Sk(v)(z, 1), v=01, areentirein A of order =.
ii) Denoteﬂk:%Jr%, k=12.Then 2

S(zA) <Clp(z- )"

for |p(z— 21)| <1, where C isapositive constant in the estimate, not dependingon z and o .
iii) The following relation holds

<S(z,1),5,(z, 1) >=1,

where < y¥(2),Y(2) >= y(2)Y'(2) - Y'(2)y(2) isthe wronskian of yand Y.
Let w, =(0,2), w, =(z,T), from[2] for ze w, U w,,

S.(24) = (2-2)"Y Sulp(z-2)", k=12,

where S,;S,, =2, S, = (—1)"’Sko(lm[((2s+ 1) (2s+ —1)+%B_ :

From [5], we have the fol lowing Lemma:
Lemma2. For (p,2) e Q= {(p,2):[p(z-2)|21}, ze w,,5=01:
5™ (2.4) = Bp ™ -ip)™ expl-ip(z— z)I], + (ip)" exp(-D) i) explip(z- z)1],
+(-)°V2i(ip) " explip(z- z)L, } (47)
where [1], =1+ 0((p(z-2,))?), B8, = (-24/2i) .

Denote
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0 (2,4) = (<)*}(SZ ¥ (0,2)S,(2,.4) - SZ(0,2)S,(2,4) ).k =12.
The functions ¢, (z, 1) are solutions of (45) and
9"V (0,4) = Sy k,m=12, (48)
(0, misthe Kronecker delta). Moreover,

<@(z2,2),p,(2,2) >=1.

Using (47) we get for z€ ., (p,2)€Q :

0" (z,2) = %(ip) ™ lexplip2)[L], + ()™ exp(-ip2)[L],
H)V2ieplp(z-22), ) [l >, km=12. (49
Using the preceding results, from (46) and (48), we have
u(z p) =re,(z,A)+r,0,(z,4) . (50)

Now, from (49) and (50) we obtain the asymptotic solution of equation (45) in the following theorem :
Theorem 5. For z€ w,, (p,2) €Q, |p|—>oo, Imp>0, m=01:
m 1, ma, . 1, . :
U™ (2 p) =2 (p)™ ot + ;) explipe)t], + 2 (Hip)™ (it +1,) exp(-ip2)l],

+ % (i)™ (pr, +ir,) explip(z—22))[1], . (51)

8. CANONICAL PRODUCT REPRESENTATION OF
SOLUTION IN THE SINGULARITY CASE

According to (24), the boundary value problem L, = L (p(t),#°(t),s) defined by equation (4) with
boundary conditions y(0,4) =1,y'(0,4) =0, y(s,4) =0, transform to the boundary value problem
L, =L,(9(2),b) with boundary conditions

u(0,4) =r, u'(0,4) =r,, u(b, 1) =0, (52

where b = jjqﬁ(g)dg ,se(O)\{,}, r,=¢%(0) and 1, = %qzﬁ_z (0)¢'(0).

Thus, according to (20) and (44) for be (O,T)\{Zi}, the boundary value problem L, has a
countable set of positive eigenvalues {1,, | ,:

T
Vi ®) =2 +0(%). (3)

According to remark 1, the solution u(z, p) of Sturm-Liouville equation (45) defined by initial
conditions (52) is an entire function of p for each fixed ze[0,T], thusit follows from the Hadamard's
theorem (see [16, p. 24]) that such solution is expressible as an infinite product.
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To complete the investigation of the last sections, we want to prove the following theorem. Theorem 2 isa
useful tool for the proof of this result:

Theorem 6. Let u(z,A) be the solution of (45) satisfying the initial conditions u(0,4) =r,,
u'(0,A)=r,. Thenfor ze B,,v =0,

where B, =(0,2), B, =(z,T), 4,,(2),n>1, represents the sequence of positive eigenvalues of the
boundary value problem L, on [0, 2], and ¢,,n=12,..., isthe sequence of positive zeros of Jl.

(54)

2
1
Proof: From (18) and (44) we obtain R, (t) = z. Thus, according to (44), (53), r, = ¢2(0) and Theorem 2,
we arrive a (54).
This completes the representation of the solution of (45) with the initial conditions (46) as an infinite
product.
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