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Abstract – In this paper, we investigate the canonical property of solutions of a system of differential 
equations having a singularity and turning point of even order. First, by a replacement, we transform the 
system to the Sturm-Liouville equation with a turning point. Using the asymptotic estimates for a special 
fundamental system of solutions of Sturm-Liouville equation, we study the infinite product representation of 
solutions of the system and investigate the uniqueness of the solution for the dual equations of the Sturm-
Liouville equation. Then, we transform the Sturm-Liouville equation with a turning point to the equation with 
a singularity, and study the asymptotic behavior of its solutions. Such representations are relevant to the 
inverse spectral problem. 
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1. INTRODUCTION 

 
We consider the following system of differential equations 
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 ]1,0[t                              (1) 

 
with initial conditions 1),0(,0),0(   yx , where   is the spectral parameter, ,1R ,2R )(tp  are 
bounded and integrable in ]1,0[I  and )(2 tR has one zero inside the interval I of even order. 

System (1) is a canonical form for many problems in natural sciences. For example, for a wide class 
of problems describing the propagation of electromagnetic waves in a stratified medium, Maxwell’s 
equations can be reduced to the canonical form (1) (see [1]). System (1) often appears in optics, 
spectroscopy and acoustic problems. System (1) also appears for the design of directional couplers for 
heterogeneous electronic lines, which constitute one of the most important classes of radio physical 
synthesis problems (see [2], [1]). Some aspects of synthesis problems for system (1) with 

021  RRR  were studied in [3] and other works. Inverse problem for system (1) with the initial 
conditions ,1),0( x  1),0( y  and with 0R  were studied in [4, 5]. In [6], the authors studied 
the eigenvalues and derived a formula for the asymptotic distribution of the eigenvalues in the case when 
the system (1) has arbitrary order singularities and turning points inside the interval [0, T]. 

The importance of asymptotic analysis in obtaining information on the solution of a Sturm-Liouville 
equation with multiple turning points was realized by Olver [7] and Eberhard, Freiling and Schneider in 
[8]. Also, the inverse problem for Sturm-Liouville equation with turning points were studied by Freiling 
and Yurko in [5]. In [9], the asymptotic estimates for a special fundamental system of solutions of the 
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corresponding differential equation and determining the asymptotic distribution of the eigenvalues with 
several singularities or/and turning points inside the interval [0, 1] were studied by Eberhard, Freiling and 
Wilchen. The results of Kazarinoff [10], Langer [11] and Olver [7] bring important innovations to the 
asymptotic approximation of solution of Sturm-Liouville equations with two turning points. Also in [12], 
the infinite product representation of solution of the equation with one turning point of odd order was 
obtained and the authors derived the associate dual equations by this infinite product form of solution. It is 
necessary to point out that applying asymptotic solutions for studying inverse problem in turning points 
cases, is more complicated and, practically, is not convenient to use. Especially in deriving the asymptotic 
formulas, one should apply Bessel function type. In addition, a more difficult and challenging task is to 
shape the asymptotic behavior of the solutions and corresponding eigenvalues. So the inverse problem of 
reconstructing the potential function from the given spectral information and corresponding dual equation 
cannot be studied by using the asymptotic forms. In fact, in asymptotic methods one cannot generally 
express the exact solution in closed form. Indeed, in methods connected with dual equations, the closed 
form of the solution is needed. The representing solution of the infinite product form plays an important 
role for investigating the corresponding dual equations. We mention that some aspects of the inverse 
problem with a singularity were studied in [13], also some aspects of the inverse problem with turning 
points were studied in [14] and other works connected with ideas of the dual equation method. In the 
previous article [15], the authors considered the following Sturm-Liouville equation 
 
                                           ,0))()1(( 2  wzzw   ,1 za                                           (2) 

 
with dirichlet boundary conditions 0)()(  zwaw , where the function )(z  is continuous, ),(1 za  
and   is the spectral parameter, also the weight function (the coefficient of   in (2)) has two turning 
points 1z  order. odd of  For 10  z , the solution ),( zw  of such an equation (2) with an initial 
condition ,0),( aw   1),( 
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where the sequence   1)( nn zr  represents the sequence of positive eigenvalues, and   1)( nn z  the 
sequence of negative eigenvalues of the dirichlet problem associated with (2) on ],[ za , for each z  in 

)1,0( , and  
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and ,nj  ,...3,2,1n , are the positive zeros of ).(1 zJ   

In this paper, first, we transform (1) to the Sturm-Liouville equation with turning point of even order, 
then we define a fundamental system of solutions (FSS) of the equation when   (see section 2). 
Using these asymptotic solutions we derive a formula for the asymptotic distribution of the eigenvalues (in 
section 4). Further, we obtain the infinite product representation of solutions (see section 5), derive the 
associate dual equations by this infinite product form of solutions, and investigate the uniqueness solution 
of these equations (see section 6). This paper continues the investigations made in sections 2-6. In section 
7, by a replacement we transform the Sturm-Liouville equation with turning point to the equation with 
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singularity and determine the asymptotic behavior of the solution. Using the infinite representation of 
solutions of section 5, the canonical representation of solutions of equation with singularity are obtained 
(see section 8). Therefore, we define singularity’s and turning’s relation by upper replacements. The other 
missing cases will be treated in a future paper as they require different techniques. 

 
2. NOTATIONS AND PRELIMINARY RESULTS  

 
Let us consider the system of differential equation (1), where the function 0)( 11  AtR  is a constant 
function and  

 
                                                                     2

122 )()( ttAtR   ,                                                              (3) 
 

where the coefficient 2A  is a positive constant and ).1,0(1 t  
 
System (1) after the elimination of x  reduces to the linear second-order Sturm-Liouville equation 
 
                                                              ,)()( 2 ytytpy                                                               (4) 

 
with initial conditions 
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where 2   is a real parameter and 2 22
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A
(t) (t t )

A
    has one zero 1t  in )1,0( , the so called turning 

point. In the terminology of [8], 1t  is of Type II . 

 
Notations 2.1. 
i) Let 0  be fixed, sufficiently small, we define 
  )(11 0  O , as ,  
where .10    
ii) For Zk   we consider the sectors 
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Now let ),( tC  be the solution of (4) corresponding to the initial conditions ,1),0( C  

0),0(  C . In order to represent the solution ),( tC as an infinite product, we use a suitable 
fundamental system of solutions (FSS) for Equation (4) as constructed in [8].  

According to the type of 1t  we know from [8, Theorem 3.2] that in the sector 1S  there exists an FSS 
of (4)  ),(),,( 21  twtw  such that 
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That leads to the following:  
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We also need  ),(),,( 1211  twtw . Similarly, for 1tt   from [8] we have 
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It follows that the wronskian of FSS satisfy 

 
                                                         12),(),,()( 21  itwtwWW  ,                                         (11) 

 
as  . 
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3. ASYMPTOTIC FORM OF THE SOLUTION 
 

We consider the differential equation (4) with the following conditions 
 
                                                              ,1),0( C  0),0(  C .                                                        (12) 

 
Applying the FSS  ),(),,( 21  twtw  for ]1,0[t  we have 

 
                                                        ),(),(),( 2211  twctwctC  ,                                                   (13) 

 
in which using cramer’s rule leads to the equation 
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By virtue of (15) and (16), the following estimates are also valid: 
 

                               





















,1),,()()0(
2

2

,0),,()()0(
2

1

),(

1
)(2

1

2

1

1
)(2

1

2

1

0

0

tttEet

tttEet
tC

k
di

k
di

t

t










                                    (17) 

 
where  
 

)(),(
)(

1

)( tbetE kn

tv

n

t
k

knk


  , 

 
and  

112   , i 10  , 0)( tkn , )1(2)(...)()(0 )(21  Rttt tkvkk  , where 
the integer-valued functions v  and knb  are constant in every interval ],0[ 1 t  and ]1,[ 1 t  for   
sufficiently small and 
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Similarly, using (9), (10) and (14) for 1tt   we find that 
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In addition, differentiating (15) we calculate 
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Thus, we deduce the following theorem: 
 
Theorem 1. Let ),( tC  be the solution of (4) under the initial conditions ,1),0( C  0),0(  C , 
then the following estimates hold: 
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4. DISTTIBUTION OF THE EIGENVALUES 

 
We consider the boundary value problem )),(),(( 2

11 sttpLL   for Equation (4) with boundary 
condition 
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The boundary value problem 1L  for  1\)1,0( ts  has a countable set of positive eigenvalues 

  1)( nn s . From (17), we have the following asymptotic distribution for each   )(sn  : 
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Similarly, according to (19), the spectrum   1nn  of boundary value problem 1L  for 1ts  , consists 

of positive eigenvalues  
 

                                                           ).
1

(
)(

8

5

)(
1

0

1 n
O

d

n
t

tn 



 


                                                       (21) 



On the canonical solution and dual equations of… 
 

Winter 2010                                                              Iranian Journal of Science & Technology, Trans. A, Volume 34, Number A1 

77

5. MAIN RESULTS 
 

Since the solution ),( tC  of the Sturm-Liouville equation defined by a fixed set of initial conditions is an 
entire function of   for each fixed ]1,0[ , it follows from the classical Hadamard's factorization theorem 
(see [16, p. 24]) that such solution is expressible as an infinite product. For fixed  1\)1,0( ts  by 
Halvorsen's result [17], ),( sC  is an entire function of order 

2

1 . Therefore, Hadamard's theorem can 
used to represent the solution in the form 
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Theorem 2. Let ),( tC  be the solution of (4) satisfying the initial conditions 1),0( C , 0),0(  C . 
Then for At  , ,1,0  
 





 


1

2

2
2

1

2

1
1

2

1 )())((
)()0(2),(

n n

n tRt
tsC







, 

 
where ),0( 10 tA  , )1,( 11 tA  ,  dsstR

t

 0

2 )(,0max)(  , 1, nn , is the sequence of positive 
zeros of 

2

1J  , the sequence 1),( ntn , represents the sequence of positive eigenvalues of the boundary 
value problem 1L  on ].,0[ t  
 
Proof: Let )(sn  be the eigenvalues of the boundary value problem 1L  on ],0[ s  for fixed Atts  , , 
then according to [18, 9.5.11, 10.1.1, 10.1.11], we have 
 

 1))(cos(2
)())((

1
2

2

tR
tRt

n n

n




 
 



, 

 
as  . Thus from (17) and (22), we obtain 
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6. DUAL EQUATIONS 

 
In this section, we first derive the dual equations associated with (4) by use of infinite product 
representation, then we investigate the uniqueness solution of these equations. 

By the implicit function theorem, )(tn  is twice continuously differentiable functions. For 
 1\)1,0( tt  , the condition 
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The first term in (26) is zero at ))(,( tt n  by virtue of (4). Thus 

 

                                                       0.).(.2 2
2

22













nnn

CC

t

C 








.                                            (27) 

 
If we make use of the infinite product form of ),( tC , substitute this in (27), in the case 

 1\)1,0( tt   the dual of the equation (4) will be obtained. Indeed, we need the various derivatives of 
),( tC  at the points ))(,( tt n  for  1\)1,0( tt  . 
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Now, we first calculate the various derivatives of ),( tC  for  1\)1,0( tt  . From (22), it can be 
written 
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Placing these terms into (27), we obtain  
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Dividing the above equation by n  and integrating from a fixed number 0  up to t , for 
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  ,                                             (33) 

 
and )(th  is determined in (29). Similarly, for )1,( 1tt  , dividing the equation (31) by n  and integrating 
from t  up to1, we obtain 

 

                                                         ),(2
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,                                                (34) 

 
where  

 

                                                      



 dtT ni
ni

t
i
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11
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  .                                              (35) 

 
The system of equation (31) is dual to the original equation (4) and involves only the function )(tn .  
We shall establish the initial value problem consisting of this system of equations subject to the initial 

condition 
 

,)1( nn        ,...)2,1( n . 
 
Before investigating the uniqueness theorem, we need to prove the following lemma: 
 
Lemma 1. Let  

 
                                                                    ),1(2 Ocncnn                                                             (36) 

 
where c  is a fixed number. Then 
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nk nk
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.                                                             (37) 
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Proof: we have  
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Note that 
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and from [20] we know that 
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O
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Consequently, in (38), the first and second sum are )

1
(

2n
O , while the third is )

1
(

3n
O . Since 

)( 2nOn  ,  
 

)1(
)(

O
c

nk nk
n 


 

 .  

 
Now we investigate the uniqueness of solution of the dual equations. 
 
Theorem 4. The initial value problem consisting of (34) subject to the initial condition 
 

,)1( nn        ,...)2,1( n , 
 

has a unique solution. 
 
Proof: For convenience, we can write this initial value problem as 
 

),(
g

dt

d
         ),...1(),1(:)1( 21   , 

 
where  , g  are defined as 
 

,nn        ,...2,1n , 
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where 
)1(

)1()1(
2

2

n

n
n

h
H




 . In order to prove the uniqueness of a solution, it suffices to prove that the 

function g  satisfies in the Lipschitz condition. To this end, first we show that ng  is of order )( 4nO . 

Since from (29) and (20), )(th  is of order )1(O  and )( 2nOn  , )(
)(

4
2

2

nO
th

n 


. So it is enough to 

prove that 
 

)1(),(2 Oe nn tT  , 
 

or equivalently we prove 
 

)1(),( OtT nn  . 
 

The interchange of summation and integration in nT  will be valid if the differentiate series 
1)( 
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ni i
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 is uniformly convergent (which is the case, see [19]). Next, we prove that 
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, 

 
it does not influence the order of the expression (40). Consequently, by Lemma 1, the estimates for (40) 
hold uniformly for t  in a compact subset of ]1,0( . 
Note that (40) and (35) imply that )1(),( OtT nn  . We therefore conclude that )1(),(2 Oe nn tT  , whence 
 

)()( 4nOgg nn  . 
 

To complete the proof, we define a normed space as follows: Let 
 









 




1
61 :)(

n
n

n


 , 

 
and define  *  as a subset containing nonzero members of   whose asymptotic distribution is of the 
form 
 

)1(
44 2

2

2

22

O
I

n

I

n
n 

  , 

 
where I  is a constant. It is trivial to see that  *  contains the sequence  1nn . Finally, g  is a map 
from *  into  , because )()( 4nOgg nn  . Furthermore, * is convex space, i.e., if 10    and 

*,   , then *)1(   , hence for each n , the function ))1((  ng  is defined on 
]1,0[ . The function ))1((  ng , 1n , is an entire function with respect to   on ]1,0[ . 

Consequently, for each n , we can find some n , 10  n , such that 
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Since ng  is a function of n , we have 
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We use (39) in order to compute the coefficient 
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where 
 

))1((
~  nnnn gf  ,   mnmnm  )1(

~
 . 

 

In the above calculation, the interchange of summation and derivation is valid since the differentiated 

series 1)( 






 ni
ni i

ni 



 is uniformly convergent (see [19]). Dividing the above equation by 6)2( n  and 

summing with respect to n , we obtain 
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where M  is a constant number. In order to derive the inequality, we have made use of the fact that the 

dependence of the various quantities on n  can be ignored for large n 's and that the sum 
 



ni
t

ni

i
1

2)
~~

(

~


  

is of )( 4nO  and )1(O
n

n 






. Thus, (43) give 

 
  Mgg nn )()( , 

 
where M  is a constant. Thus g  satisfies a Lipsschitz condition, and consequently, the equation (34) has 
an unique solution.  

 
7. THE BOUNDARY VALUE PROBLEM WITH A SINGULARITY 

 
In this section we transform (4) by a replacement to the differential equation with a singular point and we 
study the asymptotic behavior of the solutions. 
Denote 

1

0
)(  dT . 

We transform (4) by means of the replacement 
 

                                                         
t

dz
0

)(  , )()(u(z) 2

1

tyt ,                                                   (44) 

 
to the differential equation 
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                                             ),()()()( zuzuzqzu             ],,0[ Tz                                          (45) 
 

with initial conditions 
 
                                                           ,),0( 1ru         ,),0( 2ru                                                        (46) 

 
where ),0(r 2

1

1   )0()0(
2

1
r 2

3

2  


, and )(zq  has quadratic singularity in the interval ),0( T  and has 
the form: 
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 , 

 
where 

1

01 )(
t

dz  . We also assume that 
 

  ),0()( 2

1

10 TLzzzq  . 
 

Since the solutions of equation (45) have singularity at 1zz  , and therefore, in general, the values 
of the solutions and their derivatives at 1zz   are not defined. 
 
Remark 1. In [13], fundamental system of solutions  ),( zSk , 2,1k , of equation (45) were 
constructed with the following properties: 
i) For each fixed ],,0[ Tz  the functions ),,()(  zSk  1,0 , are entire in   of order 

2

1
.  

ii) Denote 
2

1

4

)1(





k

k , 2,1k . Then 
 

kzzCzSk
 )(),( 1 , 

 
for 1)( 1  zz , where C  is a positive constant in the estimate, not depending on z  and  . 
iii) The following relation holds  
 

1),(),,( 21   zSzS , 
 

where )(~)()(~)(:)(~),( zyzyzyzyzyzy  is the wronskian of y and y~ . 
Let ),,0( 10 z  ),,( 11 Tz  from [2] for ,10  z  
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From [5], we have the following Lemma:  

 
Lemma 2. For  1)(:),(:),( 1  zzzz  , 1,0,  sz s  : 
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                                                         ,1))(exp()(2)1( 1  zziii ms                                              (47) 
 

where    ,))((11 1
1

 zzO   1
21 )22(  i . 

Denote 
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The functions ),(  zk  are solutions of (45) and 
 
                                                           ,),0( ,

)1(
mk

m

k
   2,1, mk ,                                                    (48) 

 
( mk , is the Kronecker delta). Moreover, 
 

1),(),,( 21   zz . 
 
Using (47) we get for ,sz   ),( z  :  
 

      1)exp()1(1)exp()(
2

1
),()1( ziziiz kmkmm
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                                   ,1))2(exp(2)1( 1  zziik               , 2,1, mk .                          (49) 
 

Using the preceding results, from (46) and (48), we have 
 
                                                         ),(),(),( 2211  zrzrzu  .                                                (50) 

 
Now, from (49) and (50) we obtain the asymptotic solution of equation (45) in the following theorem : 
 
Theorem 5. For ,sz   ),( z ,  , ,0Im   1,0m  : 
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8. CANONICAL PRODUCT REPRESENTATION OF  

SOLUTION IN THE SINGULARITY CASE 
 

According to (24), the boundary value problem )),(),(( 2
11 sttpLL   defined by equation (4) with 

boundary conditions 0),(,0),0(,1),0(   syyy , transform to the boundary value problem 
)),((22 bzqLL   with boundary conditions 

 
                                             ,),0( 1ru         ,),0( 2ru          ,0),( bu                                         (52) 

 

where 
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1
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3

2  


. 

 
Thus, according to (20) and (44) for  1\),0( zTb , the boundary value problem 2L  has a 

countable set of positive eigenvalues   11 nn : 
 

                                                              ).
1

(2)(1 n
O

b

n
bn 





                                                       (53) 

 
According to remark 1, the solution ),( zu  of Sturm-Liouville equation (45) defined by initial 

conditions (52) is an entire function of   for each fixed ],,0[ Tz  thus it follows from the Hadamard's 
theorem (see [16, p. 24]) that such solution is expressible as an infinite product. 
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To complete the investigation of the last sections, we want to prove the following theorem. Theorem 2 is a 
useful tool for the proof of this result: 
 
Theorem 6. Let ),( zu  be the solution of (45) satisfying the initial conditions ,),0( 1ru   

2),0( ru   . Then for ,1,0,  Bz  
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1

1
2
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,                                               (54) 

 
where ),0( 10 zB  , ),( 11 TzB  , 1),(1 nzn , represents the sequence of positive eigenvalues of the 
boundary value problem 1L  on ],0[ z , and ,...,2,1, nn  is the sequence of positive zeros of 

1

2

J .   
 
Proof: From (18) and (44) we obtain ztR  )( . Thus, according to (44), (53), )0(r 2

1

1   and Theorem 2, 
we arrive at (54). 
This completes the representation of the solution of (45) with the initial conditions (46) as an infinite 
product. 
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