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Abstract – This paper presents a new numerical method for solution of eikonal equation in two dimensions. 
In contrast to the previously developed methods which try to define the solution surface by its level sets 
(contour curves), the developed methodology identifies the solution surface by resorting to its characteristics. 
The suggested procedure is based on the geometric properties of the solution surface and does not require any 
mesh for computation. It works well in finding the ridge of the solution surface as well. In addition, the area 
of the surface and its corresponding volume can be easily determined via this method. Three examples have 
been provided to demonstrate the capability of the suggested method in presenting these important features of 
the solution. The issue of convergence has also been investigated. It has been concluded that the suggested 
method works well in solving the eikonal equation in problems for which the direction of characteristics of 
the solution surface, and its area or volume underneath are quite important. 
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1. INTRODUCTION 
 

Eikonal equation is a relatively simple first-order nonlinear partial differential equation which describes 
many phenomena in physical science. These include the propagation of waves in optics, acoustics, 
elasticity and electromagnetics. Therefore, its solution has been of great interest to many researchers.  

From the classification point of view, eikonal equation belongs to the family of Hamilton-Jacobi (HJ) 
equations and is considered to be their stationary form. It can be derived from Maxwell’s equations in 
electromagnetics [1]. In its general form, it can be expressed as follows: 
 

                                                                                 ,)( kxu                                                                       (1) 
 

where )(xu is the gradient vector of the scalar function )(xu , and  represents its Euclidean norm. k is 
called the index of refraction. Although it is a simple equation, its solution is relatively difficult to obtain 
due to the nonlinearity involved. Analytical solutions are available only for very special and simple 
boundary conditions. Therefore, an attempt has been made to delineate a general framework for its 
numerical solution. The structure of the governing equation causes the resulting finite difference equation 
to be nonlinear. Therefore, the numerical procedure for solving the equation would also be complicated. 

A very useful method developed for solving time-dependent Hamilton-Jacobi equation is the Level 
Set Method proposed by Osher and Sethian [2-4]. This method is based on the initial value formulation of 
the problem. In a sense, it takes the initial wave front curve and establishes a level set function resembling 
the H-J equation whose zero level set is the initial curve. The solution surface is considered as the initial 
state which propagates in time. At any time, the wave front is obtained by finding the zero level set 
(curve) of such surface. A specially designed numerical method for solving a time-independent Hamilton-
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Jacobi equation like eikonal, is the Fast Marching Method developed by Sethian [5, 6]. In contrast to the 
more general Level Set Method, the Fast Marching Method is essentially the boundary value formulation 
of the problem because the initial position of the front curve is assumed to be the boundary of the solution 
surface. The stationary solution surface represents the time the front passes each point. Therefore, the level 
sets of the arrival time surface represent the position of front in time.  

The Level Set and Fast Marching Methods have been used in many applications in science and 
technology. These include geometric curve and surface evolution, computer graphics, geodesics, 
seismology, mesh generation, and fluid dynamics. While the Fast Marching Method is more effective in 
solving the stationary Hamilton-Jacobi equations in which the speed of front propagation does not change 
in sign, the Level Set Method is more general because it can handle the problems in which the front moves 
forward at some places and backward at some others.  

Both methods require a mesh for computation which was previously a rectangular Cartesian mesh. 
Later, the methods were extended so that the unstructured triangular meshes can also be adopted. The 
basis of the Level Set and Fast Marching Methods is wave propagation. They both work on finding the 
level sets (contour curves) of the solution surface either in time or space. The characteristics receive scant 
attention in these methods. Even the Ordered Upwind Method, which was developed later, tries to find the 
contours and define the surface by its level sets, though it uses partial information about the characteristic 
directions for the solution [7, 8]. 

Characteristics play an important role in the solution of many physical problems [9-15]. Their 
application in the graphical integration of the governing equations started more than a century ago [16]. 
The method of characteristics is also applied for the solution of non-linear partial differential equations 
[17]. In some problems involving eikonal equation, characteristics are much more important than the level 
curves, and it is preferred to define the solution surface directly via its characteristics [11-14]. Orientation 
of the characteristics of the solution surface plays an important role in the solution of Cauchy boundary 
value problems. Values of the area of the solution surface and the volume underneath are also important 
and their determination is required in some problems [18, 12-14]. These features are relatively difficult, if 
not impossible, to be obtained via the previously mentioned methods. 

A rather simple numerical method has been presented here, in this paper, for the solution of eikonal 
equation under constant index of refraction. The developed method is based on the geometric properties of 
the solution surface of eikonal equation over a closed level curve. While the previous methods work on 
finding the contours of the solution surface, this method is based on developing the surface by its 
characteristics. In contrast to the other methods, no mesh is required here for the computations. The 
method allows the calculation of the area of the solution surface and the corresponding volume rather 
simply. Examples are provided to show the capability of the method in constructing the surface over a 
level curve, which gives the solution to eikonal equation in many areas of physics. The issue of 
convergence has also been investigated via comparing the calculated values of the area and volume to the 
analytical solution available, or by observing the improvement in the answer with the increase in the 
number of divisions considered on the bounding level curve. 

 
2. STATEMENT OF THE PROBLEM 

 
The main purpose of this paper is to present a numerical method for solving eikonal equation in two 
dimensions. Mathematically the problem can be stated as: “Given a closed level curve in the x-y plane on 
which a scalar function u(x, y) is constant; find u(x, y) so that Eq. 1 holds.” In a clearer form, we want to 
find the solution surface of z=u(x, y) so that: 
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where k is called the constant or index of refraction, and   is a domain in the x-y plane bounded by the 
level set curve denoted by  . 

As mentioned in the previous section, some numerical procedures have been developed for solving 
eikonal equation, but they all are based on finding the level sets (level curves) of the solution surface. 
Nevertheless, there are problems in physics for which the characteristic curves of the solution surface are 
more important than the level curves [11-14]. The area of the surface and the volume underneath are also 
very important in some problems involving eikonal equation. Our purpose here is to present a numerical 
procedure which gives these important features of the solution surface that has received scant attention in 
earlier studies. 
 

3. GEOMETRIC CHARACTERISTICS OF THE SOLUTION SURFACE 
 
In order to arrive at a numerical procedure for solving the problem, it is necessary to draw our attention to 
the geometric properties of the solution surface. Physically, the solution of such a problem i.e., z=u(x, y), 
is nothing but a surface of constant slope, k, constructed over the region,  , bounded by the curve, 
denoted by  . This has been illustrated in Fig. 1. 
 
 
 
 
 
 
 
 
 
 

Fig. 1. The solution surface over the boundary contour curve 
 

An analogy of the problem would be the surface of a hill of sand pile made over the same area. This 
analogy was first used by Nadai [15] to assess the ultimate torque that a shaft of the same cross section can 
carry in torsion in plastic state.  

A geometric procedure suggested for solving such a problem is to start drawing contours of u inside 
the boundary curve towards the center of the area [18, 15]. In this way, the solution surface is defined by 
its contours. The precision of such a solution depends on how small are the steps between the contours. 
Such a surface can also be defined by its characteristic curves and this is preferred in many problems 
involving Cauchy boundary value data. For eikonal equation, the directions of the gradient and 
characteristics coincide. Moreover, the characteristic curves in this case are straight lines [17, 7, 8]. 
Therefore, if the gradient can be found at different points of the bounding level curve  , their direction 
would be known everywhere in the domain,  . This would simply be done by drawing lines normal to 
the boundary level curve since the gradient should always be perpendicular to the level curve (contour). 
Therefore, the inquired surface is made by moving a straight line laying on the boundary curve in the 
direction of the gradient, making a slope of k with the horizontal x-y plane. Obviously, such a surface may 
develop a ridge. If S is a point on the ridge of such a surface and S’ is its projection on the x-y plane, and if 
f1 and f2 are parts of the boundary curve on its two sides (Fig. 2); there should be at least two straight lines, 
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SN1 and SN2, in the directions of steepest decent toward this perimeter curve. Figure 2 indicates that the 
distances SN1 and SN2 should be equal since the slope of the surface is constant everywhere, and the 
perimeter curve,  , is a contour of u.  

 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2. The ridge of the solution surface and its projection 
 

Figure 3 shows the x-y plane together with the segments f1 and f2 of the boundary curve. As shown, S’ is 
the center of a circle passing through N1 and N2, being tangent to f1 and f2 at these points. 

 
 
 
 
 
 
 
 
 
 
 

Fig. 3. Geometric considerations for finding point N1 for an assumed N2  
 

The problem is, therefore, to find pairs of N1 and N2 on parts f1 and f2 of the perimeter curve. This 
becomes possible if the circles of different sizes are fitted between f1 and f2. If N2 is a point of branch f2 
with coordinates (x2, y2), at which the slope of f2 is m2, the locus of the center of circles tangent to f2 at N2 
would be the line N2T of slope 22 /1tan mt  (see Fig. 3). The fitted circle should be tangent to the other 
branch, f1 at N1, as well. If the equation of the tangent line to f1 at this point is 11 nxmy  ; the radial line 
to that point would have the slope 11 /1tan mt  , where t1 and t2 are the angular distances of the radii to N1 
and N2 from a fixed direction like the x-axis, respectively. It can simply be shown that the radius r of such 
a circle can be obtained from: 
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Coordinates of N1 can then be found from: 

 
                                                                    1221 coscos trtrxx                                                              (5) 

 
                                                                   1221 sinsin trtryy                                                               (6) 

 
Therefore, we see that for the case where f1 is a straight line, the size of the circle and coordinates of 

N1 are directly obtained from these equations. Where the bounding curves are complicated, a numerical 
procedure involving iterations would be inevitable.  
 

u 

y

x

S

S’

f1

f2 

N2

N1

Ridge
S

S’

N2

N1

Projection of the ridge on x-y plane 

y 

x 

S’

f1

f2
N2

N1

Projection of the ridge T

t2

t1

Tangent Line y=m1x+y1 

Fitted Circles 

y 

Line N2T:Locus of center of 
circles tangent to f2 at N2 



A geometric-based numerical solution of… 
 

Winter 2010                                                              Iranian Journal of Science & Technology, Trans. A, Volume 34, Number A1 

51

4. NUMERICAL PROCEDURE 
 
The procedure followed here is to assume a point on one side of the perimeter curve, and find its conjugate 
on the other side. Different procedures might be proposed for this purpose. A geometric based iterative 
procedure has been suggested here. Figure 4 roughly demonstrates the steps for finding N1 for an assumed 
N2 on f2. As mentioned before, the line N2T is the locus of the center of all circles that pass through N2 and 
are tangent to f2. The starting point for N1 can be taken just above N2 on f1 (point N). A line is drawn 
tangent to f1 from this point. A circle is then drawn from N2 tangent to f2, so that it is tangent to this line as 
well. The size of this circle is found from Eq. 4. The point of tangency of this circle and the line is then 
found from Eqs. 5 and 6. The point located just under this point of tangency, but on f1 is considered as the 
answer for N1 for this trial. This point is used as the starting point for the next trial. The same procedure is 
followed for obtaining a better answer for N1. Iterations for finding a better location for N1 are stopped 
when the distance from the new location of N1 to its previous position is less than an acceptable error. The 
point S on the ridge related to the pair N1 and N2, can be located above the center of the fitted circle by a 
height rk. This procedure has been implemented into a computer program written in Matlab environment.  
 

  
Fig. 4. Geometric based procedure for finding the conjugate of N2 on f1 

 
5. ALGORITHM FOR NUMERICAL SOLUTION 

 
In order to find the solution surface of the NPDE over a domain bounded by  , we first consider a 
number of N2 points on the branch f2 of  . For each of them we try to locate its correct conjugate N1 on 
the other side using the procedure described in the previous section. In this way an answer is found for the 
triple (N1, S, N2). We then repeat the same procedure for the next N2 and get another triple of the form (N1, 
S, N2). Proceeding in the same way will result in the solution surface, which can be constructed by 
connecting N1 to S, and S to N2 for each of the (N1, S, N2)-triples found (see Fig. 2). In this way, the 
solution for this nonlinear PDE over this contour curve is obtained. The closer the successive points N2 
taken on f2 to each other the more precise would be the obtained solution surface. 
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An important application of the suggested procedure is the ease of calculating the area of the solution 
surface and the corresponding volume. As mentioned previously, these values are useful in some areas of 
physics and mechanics. Once the positions of a set of points N1, S and S’ or N2, S and S’ on successive 
planes they make around the perimeter contour curve are obtained, the required area and volume can 
readily be computed. The area of the surface is obtained by summing the areas of the triangular elements 
whose sides are SiNi’s, and whose vertices are S or N of the next or previous characteristics. The volume 
under the surface is calculated by summing the volumes of the tetrahedrons filling the volume between 
successive S’SN planes on both sides. The computer code written, makes these calculations. The flowchart 
of this computer program has been shown in Fig. 5. 

 
6. EXAMPLES OF APPLICATION 

 
Examples are provided here, in this section, to demonstrate the capability of the suggested procedure in 
establishing the solution surface. The area of the surface and the volume under it have also been calculated 
in each case. These quantities have been used to show the progressive convergence in the answer of the 
problem as the number of divisions on f1 and f2 is increased. Results have also been compared to the 
analytical values where they have been available.  
 
Example 1. 
The domain over which the solution is sought in this example is the region common between two circles 
of equal radius, when their centers are r2  apart. Under such a condition, the circles would be normal to 
each other where they intersect. Figure 6 shows the constructed surface obtained from the suggested 
numerical method for k = 1, when only 18 divisions are taken on each part of the bounding contour. 

The position of the ridge for a different number of divisions is compared to that obtained from the 
analytical solution in Fig. 7. This figure indicates progressive convergence in the position of the ridge with 
an increase in the number of divisions. For this problem, the exact values of the area of the solution 
surface and the volume under it can be obtained analytically. These values are 0.80723r2 and 0.0646738r3 
respectively. The numerically calculated values of the surface area and the volume have been compared to 
these exact answers in Fig. 8. The figure indicates convergence of the answer as the number of divisions is 
increased. As shown, there is not much improvement in the answer when the number of divisions exceeds 
90.  

 
Example 2. 
The bounding contour curve in this example consists of two parts. f1 is part of a circle of equation 

2)40(100 xy  . f2 is part of another circle with equation 2240 xy  . The intersection of these 
curves are points (38.75, ±9.9216). The surface representing the solution to the PDE is shown in Fig. 9. 
This has been obtained by the program at k =1 for 18 number of divisions on each side. The resulting 
volume and surface area obtained from the numerical calculations have been drawn vs. the number of 
divisions in Fig. 10 to demonstrate the convergence in the answer of the problem. This figure indicates 
rapid convergence in the answer as the numbers of divisions approach 70. Elevation of the points at the 
ridge for different numbers of divisions is shown in Fig. 11. The figure indicates convergence in the 
position of the ridge with an increase in the number of divisions. 
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Fig. 5. Flow chart of the algorithm for finding the solution surface 
 

           Define the perimeter curve   , and the  
value of k, i.e., the slope of the solution surface 

Consider a number of N2 points on the branch f2 of the perimeter curve and start with the first  

Evaluate the slope of f2 at N2 i.e. m2 . 
Evaluate t2 from 22 /1tan mt   

Start

Try a trial N1 on f1 as the conjugate of this N2  

Find m1 and n1 i.e. the slope and abscissa of the line tangent to f1 at this trial N1 
Evaluate t1 from 11 /1tan mt  . 

Record this trial N1 as the correct conjugate of N2. 
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next iteration. 
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Fig. 6. The solution surface for Example 1 
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Fig. 7. Convergence in the position of the ridge for Example 1 
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Fig. 8. Progressive convergence in the answer of  Example 1 
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Fig. 9. The solution surface for Example 2 
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Fig. 10. Convergence in the answer of Example 2 
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Fig. 11. Convergence in the position of the ridge for Example 2 
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Example 3. 
Part of the bounding curve in this example has been taken concave to demonstrate the capability of the 
method in such a case. The domain over which the surface is constructed is the region outside the circle 

221 xy   and inside the ellipse 22 )]5.0(75.0[75.0  xy . The radius of the circle is 1 and its 
center is at the origin. The ellipse is a horizontal one whose center is at (-0.5, 0). The minor axis is vertical 
which measures 1.5. The major axis is horizontal, being 2 in length. Therefore, the ratio of minor to major 
axes is 0.75. The value of k is taken 3

1 . This is equivalent to the slope of 30o for the surface 
everywhere. Figure 12.a shows the solution surface for this case which looks like a desert sand dune, also 
called Barkhan. The top view of the solution surface has been shown in Fig. 12.b. The measure of the 
surface area and the volume underneath as a function of number of divisions taken on branches of the 
bounding curve has been shown in Fig. 13. The figure indicates rapid convergence in the answer as the 
number of divisions increases to 60. 

 

 
 

Fig. 12a The solution surface for Example 3 
 

 
 

Fig. 12b Top view of the solution surface of Example 3 
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Fig. 13. Convergence in the answer of Example 3 
 

The examples provided herein also indicate the capability of the suggested procedure in finding the 
characteristics of the solution surface as well (Figs. 6, 9, 12a and 12b). In this way, the essential 
implement in applying the method of characteristics in the solution of the boundary value problems 
involving eikonal equation becomes available.  
 

7. CONCLUSION 
 
In this paper, a new method for finding the solution surface of eikonal equation over a level curve was 
presented. In contrast to the previously developed methods for solving this non-linear equation, the 
presented geometric-based numerical procedure works on finding the characteristics of the solution 
surface rather than its level sets (contour curves). The method is capable of finding the surface without 
using any mesh in the domain. The ridge of the surface is also found simultaneously. The presented 
method works well in finding the area of the solution surface or the volume underneath, quantities that are 
difficult to be obtained by previous methods. It is concluded that the suggested procedure has a better 
applicability in problems involving eikonal equation where the information about the characteristics 
directions and the area of the solution surface or its underneath volume are essential. 
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