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1. PRELIMINARIES IN TRANSFORMATIONSEMIGROUPS 

 
Let X  be a compact Hausdorff topological space, S  be a topological discrete semigroup with identity e  
and XSX :  ( ),(),( SsXxxssx  ) be a continuous map such that for all Xx  and 
for all Sts , , we have xxe   and txsstx )()(  , then the triple ),,( SX  or simply ),( SX  is called 
a transformation semigroup. In a transformation semigroup ),( SX  we have the following definitions: 
1. For each Ss , define the continuous map XXs :  by xsx s   ( Xx ), then ),(E SX  or 
simply )(E X  is the closure of }|{ Sss   in XX  with pointwise convergence. Moreover, it is called 
the enveloping semigroup (or Ellis semigroup) of ),( SX . )(E X  has a semigroup structure (see [1] and 
[2]). A nonempty subset K  of )(E X  is called a right ideal if KXK )(E , and it is called a minimal 
right ideal if none of the right ideals of )(E X  is a proper subset of K . The set of all minimal right ideals 
of )(E X  will be denoted by ))(E(Min X . 
2. A nonempty subset Z  of X  is called invariant if ZZS  . Moreover, it is called minimal if it is 
closed and none of the closed invariant subsets of X  is a proper subset of Z . The element Xa  is 
called almost periodic if )(E Xa  is a minimal subset of X . 
3. Let Xa , A  be a nonempty subset of X , )(E Xp , C  be a nonempty subset of )(E X , and K  
be a right ideal of )(E X , then )(E)(E:L XXp   such that pqqp )(L  ))(E( Xq  is a 
continuous map. The following sets are introduced: 
 

KKKpK p  :L|{)(B  is bijective} , }:{),(F aapCpCa  , 
 

KKKpK p  :L|{)(S  is surjective} , 
Ab

CbCA


 ),(F),(F , 

 
KKKpK p  :L|{)(I  is injective} , }|{)(J 2 ppKpC  . 
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2. A BRIEF SURVEY 
 

2.1. -a minimal sets: introduction and their idempotents 
 
a minimal sets have been introduced in [3]. From some points of view they behave very similar to a 

minimal right ideal of an Ellis semigroup; these similarities lead us to other collections of a closed right 
ideal of Ellis semigroup, i.e., minimalA  sets and minimalA  sets which have been introduced in 
[4]. 

In the transformation semigroup ),( SX , let Xa , A  be a nonempty subset of X  and K  be a 
closed right ideal of )(E X , then: 
 K  is called an a minimal set if: 
 

o )(E XaaK  , 
 
o K  does not have any proper subset like L , such that L  is a closed right ideal of )(E X  with 

)(E XaaL  , 
the set of all a minimal sets is denoted by )(M a  and it is nonempty [3, Proposition 3], 
 K  is called an minimalA  set if: 
 

o )(E XbbKAb  , 
 
o K  does not have any proper subset like L , such that L  be a closed right ideal of )(E X  with 

)(E XbbL   for all Ab , 
the set of all minimalA  sets is denoted by )(M A  and it is nonempty [4, Theorem 2], 
 K  is called an minimalA  set if: 
 

o )(E XAAK  , 
 
o K  does not have any proper subset like L , such that L  be a closed right ideal of )(E X  with 

)(E XAAL  , the set of all minimalA  sets is denoted by )(M A , there are examples in which )(M A  is 
empty and the others in which )(M A  is nonempty [5]. 
 The following sets are introduced:  
 

o )})),(F(J)(M(|{),(  KAAKAXASXM , 
 

o )})),(F(J)(M()(M|{),(  KAAKAAXASXM . 
 
In the transformation semigroup ),( SX , let XAa  , then we have: 
1. let K  be a closed right ideal of )(E X , )(M AI   and )(M AJ   ( )(M A  may be empty in which 
case the last item will be disregarded), then we have: In the following table, the mark  indicates that for 
the corresponding case )Q(  is true, where 
   is: (If Q  then Q  is a subsemigroup of C ), 
   is: ( uCvu ()(J,   is a left identity of uC (  is the identity of Cv)(CuCu)  ), 
   is: ( uu Q()Q(J(   is a group with identity )}Q(J|Q({))  vvu  is a partition of Q  into 
some of its disjoint isomorphic subgroups ))Q(J(card)})Q(J|Q({card)  vv ), 
([4, Theorem 4], similar to [1, Proposition 3.5]). 
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)Q(  Q  ),(F CA  ),(F CA  )(B C  )(S C  )(I C  

C  
  K  or I  or J       

  K       

  I  or J       

  K       
  I       
  J       

 
2. For each )(M, ALK  , we have: 
 
i. KpLKAp  ),(F , 

ii. vvuuuvLAvKAu  )),(F(J!)),(F(J , 

iii. uuvLAvKAu  )),(F(J!)),(F(J , 

iv. 1)))()|L((J(card)),(F(J 1   uKAu Lu , 

v. ))),(F(J(card))),(F(J(card LAKA  , 

vi. ))),(F(J(card))),(F(J(card))(M(card
)(M


AN

NAKAA


 . 

 
And for each )(M, ALK  : 
 

 )),(F( KpLKAp ))),(F(J(card))),(F(J(card))(M(card
)(M


AN

NAKAA


 , 

 
and the same as (ii), (iii), (iv), and (v) in the above mentioned items ([4, Theorem 7], similar to [1, 
Proposition 3.6]). 

3. One of the best similarities is: "for each Ab , b  is almost periodic", iff " ))(E(Min)(M XA  ", iff 

"  ))(E(Min)(M XA ", iff " ))(E(Min)(M XA  ", iff "  ))(E(Min)(M XA " [4, Note 12]. 
 
2.2. Distality and proximal relations in -a minimal sets 
 

In the transformation semigroup ),( SX , let XAd  . ),( SX  is called distal if ))(E(Min)(E XX  , 
),( SX  is called d distal if )(M)(E dX  , and for }M,M{Q , ),( SX  is called )(QA distal if 

)()(E AQX  . Sets: 
 

}))(E(Min|),{(),(P ypxpIpXIXXyxSX   
 

})(M|),{(),(P ypxpIpdIXXyxSXd   
 

})(M|),{(),(P ypxpIpAIXXyxSXA   
 

})(M|),{(),(P ypxpIpAIXXyxSXA   
 

are called respectively proximal relation, d proximal relation, )M(A proximal relation, and 
)M(A proximal relation (on X ). Suppose Nn , we have: 

1. It is well-known that " ),( SX  is distal", iff " )}(E{))(E(Min XX  " iff " XSX ),(P " (see [1, 
Proposition 5.3, Lemma 5.12] also iff " ),( SXXx  is x distal" iff " xXx ((  is almost 
periodic ),(() SX  is x distal )) ", (in these cases )(E X  is a group). On the other hand, ([4, Theorem 
18] and [6, Theorem 4]): 
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a. if ),( nnn SXA M , then " ),( SX  is )M(A distal'', iff " )}(E{)(M XA  ", iff " ))(E,(F XA  is a 
subgroup of )(E X ", iff " )))(E,(F(J XA  is a subgroup of )(E X ", iff " }{)))(E,(F(J eXA  ", iff 
" ),( nn SX  is )M(nA distal", iff " XA SX ),(P "; 
(in these cases ))(E,(F XA , ))(E(B X , ))(E,(F))(E(B XAX  , ))(E,(F))(E(B XAX   and 

))(E,(F))(E(S XAX   are subgroups of )(E X ); 
b. if ),( SXA M , then " ),( SX  is )M(A distal", iff " )}(E{)(M XA  ", iff " ))(E,(F XA  is a subgroup 
of )(E X ", iff " ))(E,(F XA  is a subgroup of )(E X ", iff " ))))(E,(F(J)))((E,(F(J XAXA   is a subgroup of 

)(E X ", iff " }{)))(E,(F(J eXA  ", iff " XA SX ),(P "; 
(in these cases ))(E,(F XA , ))(E,(F XA , ))(E(B X , ))(E,(F))(E(B XAX  , 

))(E,(F))(E(B XAX  , ))(E,(F))(E(S XAX   and ))(E,(F))(E(S XAX   are subgroups of 
)(E X ; 

(Note the fact that ),(),(}{ SXSXd MM   (if ),( SXA M , then )(M)(M AA  )). 
2. It is well-known that " ))(E(Min X  is singleton", iff " )(P X  is a transitive relation on X ", iff " )(P X  
is an equivalence relation on X " (see [1, Proposition 5.16]). On the other hand, we have [6, Theorem 5]: 
c. if ),( SXA M , then " )(M A  is singleton'', iff " )(P XA  is a transitive relation on X ", iff " )(P XA  
is an equivalence relation on X "; 
d. if ),( SXA M , then " )(M A  is singleton", iff " )(P XA  is a transitive relation on X ", iff " )(P XA  is 
an equivalence relation on X ". 
3. Let S  be abelian. It is well-known that if " )(P X  is a closed relation on X " then " )(P X  is an 
equivalence relation on X " (see [1, Lemma 5.18]). On the other hand, we have [6, Theorem 5]: 
e. if ),( SXA M  and )(P XA  is a closed relation on X , then )(P XA  is an equivalence relation on 
X , 

f. if ),( SXA M  and )(P XA  is a closed relation on X , then )(P XA  is an equivalence relation on 
X . 

 
2.3. -a minimal sets and product spaces 
 

Let ),( SX , ),( 11 SX , ..., ),( nn SX  be transformation semigroups and }|),{(  SX  be a 

nonempty collection of transformation semigroups. 

1. For 



ni

in Xaa
1

1 ),...,(  we have 




()(M),...,(M
1

),(1
),(

11

n

i
iSXn

SX
aaa

ii
n

i
i

n

i
i

 )})(M},...,1{|{ ),(
1

iSXi

n

i
i aKniK

ii




 

([7, Theorem 5]), as a matter of fact, if ),( 











 SXA M , then 


 






 





 )(M)(M ),(),( AA SXSX . 

Note to the fact that ),(}|}{{ SXXxx M , and conclude 











 )),(E(Min)),(E(Min SXSX . 

2. )}(M|}|){{()}(M|{)ˆ(M ),(),(),(
aKKppaKa SXSXKSX

  
 and ))ˆ(M()(M

),(),( aa
SXSX   , )(   

(where   is the projection map on  's component and 
  Xaa )(ˆ ) ([7, Theorem 5]). 

 
2.4. Other notes 
 

The reader may find new generalizations about almost periodicity related to a minimal sets in [4], 
related topics between bitransformation semigroups and a minimal sets in [8], transformed dimensions 
(in a minimal sets) in [9], interesting examples and counterexamples in [5], and more related topics in 
[10-15]. The reader may find interesting theorems in the above mentioned articles which have been 
disregarded in this note for briefness, e.g., in [10] it has been proved that in the transformation semigroup 

),( SX  if nSS ,...,1  are subsemigroups of S  such that 
ni

iSe



1

, then ),( SX  is distal (resp. a distal) 
iff for each },...,1{ ni , ),( iSX  is distal (resp. a distal). 
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3. AN IMPROVEMENT: SOME EQUIVALENCE 
RELATIONS AND -a MINEMAL SETS 

 
In this section some simple equivalence relations based on a minimal sets' definition are found, which 
help the reader to feel much closer to a minimal sets' approach. 
 
Definition 1. 
In the transformation semigroup ),( SX , for nonempty subsets A  and B  of X , if }M,M{D , define: 
 A  and B  are equivalent if }:)(M{}:)(M{ BbbAaa  . 
 A  and B  are D equivalent if )(D)(D BA  . 
Moreover: 
 A  is called subq-independent (or subq )( independent) if there is not any nonempty proper subset C  
of A  such that A  and C  are equivalent, 
 A  is called subq )D( independent if there is not any nonempty proper subset C  of A  such that A  and 
C  are D equivalent, 
 A  is called supq-independent (or supq )( independent) if there is not any proper supset C  of A  such 
that A  and C  are equivalent, 
 A  is called supq )D( independent if there is not any proper supset C  of A  such that A  and C  are 
D equivalent. 

 
Remark 2. 
 In the transformation semigroup ),( SX , "equivalent", " M equivalent", and " M equivalent" 
relations are equivalence relations on the collection of nonempty subsets of X . 
 The "equivalent", " M equivalent", and " M equivalent" relations are invariable under 
isomorphisms of transformation semigroups (a continuous function ),(),(: SYSX   is called 
homomorphism if for each Xx  and each Ss  we have sxxs )()(   , and if in addition it is onto 
and 1-1, then it is called an isomorphism). 
 
Theorem 3. 
In the transformation semigroup ),( SX , let XAa   and XBb  . 
1. If for each Ac , c  and a  are equivalent (i.e., }{c  and }{a  are equivalent), then for each nonempty 
subset C  of A , A  and C  are equivalent and M equivalent. 
2. a  and b  are equivalent if and only if a  is b almost periodic and b  is a almost periodic. 
3. A  and B  are M equivalent if and only if A  is )M,M(B almost periodic and B  is )M,M(A almost 
periodic. 
4. A  and B  are M equivalent if and only if A  is )M,M(B almost periodic and B  is )M,M(A almost 
periodic or  )(M)(M BA . 
 
(Remark: Let }M,M{R,Q   and A , B  be nonempty subsets of X , such that whenever  

MR  , then )(M A , and let Xba , . We say (see [4, Definition 13]): 
 b  is a almost periodic if: 
 

KLbLaK  )(M)(M , 
 

 B  is )R,Q(A almost periodic if: 
 

KLBLAK  )(Q)(R .) 
 

Proof: In the transformation semigroup ),( SX , let XAa   and XBb  . 
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1. For each each nonempty subset C  of A  we have )(M)(M aC  . 
2. Suppose a  be b almost periodic and b  be a almost periodic. If )(M aK  , there exists 

)(M bL  and )(M aK   such that KL   and LK  , so if KK   by )(M, aKK   we have 
KK   and )(M bLK  ; therefore )(M)(M ba  , by a similar method )(M)(M ab  , thus a  and 

b  are equivalent. 
 For (3) and (4), use a similar method described for (2). 
 
Note 4.  
In the transformation semigroup ),( SX , let XAa  . 
o )}(M)(M|{ abXb   is supq-independent and the maximum element of aBXB (|({   
and B  are equivalent ))}, . 
o ABXB (|{   and B  are equivalent AcXb  |{)}(  )})(M)(M cb   is supq-
independent and the maximum element of ABXB (|({   and B  are equivalent ))}, . 
o ABXB (|{   and B  are M equivalent )}  is supq )M( independent and the maximum 
element of ABXB (|({   and B  are M equivalent ))}, . 
 The following sets are directed: 
 

ABXB (|({   and B  are equivalent ))}, , 
 

ABXB (|({   and B  are M equivalent ))}, . 
 

(Note: Using [9, Theorem 12], for each nonempty subset B  and C  of X , we have 
))},(M),(M|min({)(M 2121  CKBKKKCB , which leads us to the desired result.) 

 For XBCA  , we have: 
o if A  and B  are equivalent, then A  and C  are equivalent, 
o if A  and B  are M equivalent, then A  and C  are M equivalent. 
 
Theorem 5. 
In the transformation semigroup ),( SX , let A  and B  be nonempty subsets of X . 
A. If A  is the set of all almost periodic points, then: 
 For each subq-independent subset B  of X , 1)(card  BA . 
 For each subq )M( independent subset B  of X , 1)(card  BA  (moreover, in this case 

},{  BBA ). 
 For each subq )M( independent subset B  of X , 1)(card  BA  (moreover, in this case 

},{  BBA ). 
 A  is supq-independent, supq )M( independent and supq )M( independent. 
B. If for each Aa , a  is almost periodic, then the following statements are pairwise equivalent: 
1. A  and B  are equivalent. 
2. A  and B  are M equivalent. 
3. A  and B  are M equivalent. 
4. for each Bc , c  is almost periodic. 
C. The following statements are pairwise equivalent: 
1. For each Aa , a  is almost periodic. 
2. For each nonempty subset B  of X , B  and BA  are M quivalent. 
3. For each supq )M( independent subset B  of X , BA  . 
4. For each supq )M( independent subset B  of X , BA  . 
 



-a minimal sets and their properties 
 

Winter 2010                                                              Iranian Journal of Science & Technology, Trans. A, Volume 34, Number A1 

33

Proof:  
First note: 
 A  is supq-independent if and only if for each AXd  , }|)(M{)(M Accd  . 
 Due to [4, Note 12] the statements "for each Aa , a  is almost periodic", "for each Aa , 

))(E(Min)(M Xa  ", " ))(E(Min)(M XA  " , and " ))(E(Min)(M XA  " are pairwise equivalent. 
Now we have:  
A. Let A  be the set of all almost periodic points of ),( SX . 
Suppose B  be a nonempty subset of X  and BAba ,  be such that ba  , then B  and }{bB   are 
equivalent, since }{bBa   and ))(E(Min)(M)(M Xab  ; thus B  is not subq-independent. 
Moreover, if BAb   and  }{bB , then }){(M)(M bBB   and }){(M)(M bBB  , 
therefore B  is not subq )M( independent and B  is not subq )M( independent. 
C. 
 (1) (2): By [9, Theorem 12] we have ))},(M),(M|min({)(M 2121  BKAKKKBA . If for each 

Aa , a  is almost periodic, then ))(E(Min)(M XA   and  
 

)(M))},(M)),(E(Min|min({)(M 2121 BBKXKKKBA   
 

(since each closed right ideal of )(E X  contains a minimal right ideal of )(E X ). 
 (2)   (3): It is clear. 
 (3)  (4): The set of all almost periodic points is supq )M( independent, so all of the points of A  are 
almost periodic and for each nonempty subset B  of X , )(M)(M BAB  .  
 (4)  (1): The set of all almost periodic points is supq )M( independent, so all of the points of A  are 
almost periodic. 
 
Corollary 6. 
In the transformation semigroup ),( SX , let A  be a nonempty subset of X  and }M,M{D . 
 If for each nonempty subset B  of X  we have: " A  and B  are equivalent if and only if BA  ", then: 
 

))(M)(M( xaxaXxAa  . 
 

 If for each nonempty subset B  of X  we have: " A  and B  are D equivalent if and only if BA  ", 
then A  is a singleton set which contains the unique almost periodic point of X . 
 
Theorem 7. 

Let }|),{(  SX  be a nonempty collection of transformation semigroups and for each  , A  

and B  be nonempty subsets of X , then in the transformation semigroup ),( 
 




 SX  (where for 

each 


 


 Xx )(  and 


 


 Ss )( ,    )(:)()( sxsx ) we have: 

 If W is one of the terms: "equivalent", " M equivalent (under the assumption 

),(, 














 SXBA M )", and " M equivalent (under the assumption ),(, 














 SXBA M )", 

then we have: 
 

"


A  and 


B  are W " if and only if 

 
"for each  , A  and B  are W". 
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 If W 0  is one of the signs: "-", " M  (under the assumption ),( 











 SXA M )", " M  (under the 

assumption ),( 











 SXA M )", then we have: 
 

"


A  is supq )( 0W independent" if and only if 

 

"for each  , A  is supq )( 0W independent". 
 

 If W }M,M,{0  , then we have: 
 

If "


A  is supq )( 0W independent", then 

 

"for each  , A  is supq )( 0W independent". 
 

 If W is one of the terms: "equivalent", " M  equivalent (under the assumption 

),( 








 SXC M )", and " M  equivalent (under the assumption ),( 








 SXC M )", then: " C  

and 


 )(C  (where   is the projection map on the  's coordinate) are W". 

 If W 0  is one of the signs: "-", M  (under the assumption ),( 








 SXC M )", " M  (under the 

assumption ),( 








 SXC M ", then we have: 
 

If " C  is supq )( 0W independent", then " 





 )(CC ". 

 
Proof: 
Use the following notes: 
 if ),( 












 SXA M , then  

















 |{)(M ),( KASX  )}(M ),(   AK SX , 

 if ),( 











 SXA M , then  

















 |{)(M ),( KASX  )}(M ),(   AK SX . 

 
Theorem 8. 
In the transformation semigroup ),( SX , let 




X
X:  be the projection map (where aba |),{(  

and b  are equivalent} ), then we have: 

1. 

X

 is a singleton set if and only if all of the points of X  are almost periodic. 

2. If, in addition, S  is an abelian group, Xa , and   is closed and invariant, then in the transformation 

semigroup ),( S
X


 (where )(:)( xssx    ),( SsXx   (for the projection map 




X
X: ): 

 a  is almost periodic if and only if )(a  is almost periodic, 
 If a  is an almost periodic point of X , then )(a  is the unique almost periodic point of 


X

. 
 
Example 9. 
Let us call a closed right ideal K  of )(E X  particular if for each Xba , , )(M)(M baK   if and only 
if a and b  are equivalent, and for }M,M{D  call K  -D particular if for each nonempty subsets BA,  
of X , )(D)(D BAK   if and only if A  and B  are -D equivalent. In the transformation semigroup 

),( SX , we have: 
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 )}(E{))(E(Min XX   is a subset of the set of particular, M particular and M particular closed 
right ideals of )(E X . 
 If K  is M particular or M particular, then K  is particular (since for each Xa  we have 

})({M})({M)(M aaa  .  
Let }|),{(  SX  be a nonempty collection of transformation semigroups, and for each  , 

K  be particular a closed right ideal of ),(E  SX , then 


K  is particular in the transformation 
semigroup ),( 

 



 SX . 
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