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Abstract 

From the early 1950s, estimating the autocorrelations of polynomials with coefficients on the unit circle has found 
applications in Ising spin systems and in surface acoustic wave designs. In this paper, a technique is introduced 
that not only estimates the autocorrelations, but for some special types of such polynomials, it locates the 
frequencies at which maximum autocorrelation occurs. 
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1. Introduction 

Let h  be a complex polynomial of degree n . The 
integers less than or equal to n  are called the 
frequencies of h . For any frequency k  of h  
define 
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Let T  denote the unit circle and nC  denote the 

class of all degree n  complex polynomials. Define 
 

 ,n,0,1,=k,)k(h|h= nn TCU    
 
and 
 

  .n,0,1,=k,11,)k(h|h= nn  CV  
 

We observe from [1-5] that estimating the 

coefficients (in modulus) of 
it 2| h(e ) | ,  with 

nh V , have found applications in Ising spin 

systems of physics, orthogonal designs and 
Hadamard matrices of combinatorics, and in 
telecommunications, surface-acoustic wave design, 
the Loran C precision navigation system, channel-
measurement, optical time-domain reectometry, 
synchronization, spread spectrum communications, 
and, recently, Orthogonal Frequency Division 
Multiplexing (OFDM) systems. So in what follows, 
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we introduce techniques for estimating 
autocorrelations. 

Given complex numbers m ,,, 10   and 

m ,,, 10  , the square representation of the 

products jk  ( mjk ,0,1,=,  ) is formed by 

11 22   mm  squares on which m ,,, 10   and 

m ,,, 10   respectively are the columns and 

rows of the representation. We label each of the 

squares by jib ,  ( mji  ,0 ). Thus jib ,  is the 

square located in 1)( i th row and 1)( j th 

column. For example, if 3=m , then the square 
representation and label representation are 
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00  01  02  03  

10  
11  12  13  

20  21  
22  23  

30  31  32  33  

0,0b  0,1b  0,2b  0,3b  

1,0b  1,1b  1,2b  1,3b  

2,0b  2,1b  2,2b  2,3b  

3,0b  3,1b  3,2b  3,3b  
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        h (0) h ( 1)e h ( m)e .
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The 12 m  complex numbers 

)(,),( mhmh    can be obtained from the 

square representation of the products jk  as 

follows: 
 

 

)(mh   0m   the number in mb0,  (top right square)  

1)(  mh   101  mm    sum of numbers in 10, mb  and mb1,   

       
 (0)h   mm 00  sum of numbers in diagonal squares  

       
1))((  mh   mm  110    sum of numbers in 1,0mb  and ,1mb   

)( mh    m 0   the number in ,0mb  (bottom left quare)  

    

For example, if itititit eeeef 32321=)(   

and itititit eeeeg 32 241=)(  , then the 

square representation for gf  is 
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and therefore we have, 1=(3) h , 43=(2) h , 

1122=(1) h , 2381=(0) h , 624=1)( h , 

41=2)( h , and 2=3)( h . That is 
 

it 3it 2it it it 2it 3it(fg)(e ) = e e 11e 14 4e 3e 2e .        
 

 
The square representations here are not just for 

easy calculations of some polynomial product. In 
fact, the counter example presented in [6] was 
found by the use of this technique and, as will be 
seen, their most important applications are 
estimating or sometimes evaluating the 
autocorrelations of Golay type polynomials that we 
define as follows: 
 
Definition 1.1. A pair of polynomials 

))(),(( zBzA nn  ( Cz ) of the same degree 

ndd =  are called a Golay pair of polynomials, if 

for every },{0,1, dk   and for all real t  they 

satisfy the following two conditions: 

n n(A ) (k) = 1 and (B ) (k) = 1,                (1) 
 

it 2 it 2
n n| A (e ) | | B (e ) | = 2d 2.                         (2) 

 
The most remarkable polynomials which form 

Golay complementary pairs were discovered by 
Harold S. Shapiro in his 1951 Master thesis [7]. He 
accidently made the discovery as he had many 
stimulating conversations with fellow student D. J. 
Newman about the Fejer-Riesz Theorem on non 
negative trigonometric polynomials. Shapiro's 
Master thesis has never been published, but it was 
used in an extremal work of Walter Rudin in [8]. 
The course of those studies has led to what we now 
call the Rudin-Shapiro polynomials. These 
polynomials are categorized as flat polynomials. 
This refers to the fact that the amplitude of the 
complex polynomials are, on the unit circle, 
bounded by a constant times the energy of the 
polynomial. The construction of flat polynomials 
dates back to the beginning of the 20th century. Of 
course, at that time the purpose was mainly pure 
rather than to design signals for use in digital 
transmission systems. One of the early examples of 
flat polynomials is a discovery in 1916 by Hardy 
and Littlewood [9]. Another reason that makes the 
Rudin-Shapiro polynomials so important is that, in 
general, polynomials with small autocorrelations 
are of interest in a number of applications in signal 
processing and communications (see [10-12]). 
Since the 1950s, digital communications engineers 

1   2   3   1  

4   8   12   4  

1  2   3   1 

2   4   6   2  
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have sought to identify binary sequences for which 
the absolute values of the aperiodic autocorrelation 
function are collectively small, for application in 
synchronization, pulse compression and, especially, 

radar [13]. Letting (1,1)=),( 00 qp , for 1n  

and Cz  the Rudin-Shapiro pair of polynomials 

),( nn qp is defined by 
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(because nit
n

tni eqedeg 2))(( 2  ). Therefore, 

)()(=)()( 1 jpjp nn


  and so the first n2  

coefficients of 1np  are identical with those of np  

and these coefficients do not depend on n . Hence 

for each n , there are numbers  11,, nn   

such that 
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Thus the relation (1)  holds and for (2)  see [10] 

or [11]. 
 

Definition 1.2. Each of the 12 1 n  numbers 

which form the coefficients of 2|)(| it
n ep  and 

each of the 12 1 n  numbers which form the 

coefficients of )(2 it
n ep  are, respectively, called an 

autocorrelation and a correlations of np .  

 
Definition 1.3. Given  positive integers n  and m , 

a sequence (of frequencies) }{ n  of 2
np  is said to 

have an m -stable cycle (for correlation) if there are 

absolute constants 1A , 2A  and 3A  such that 
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where mn

mnmn r 
  2=  for some 

unspecified number r .  
 

Definition 1.4. A sequence (of frequencies) }{ n  

of 2|| np  is said to have an m -stable cycle (for 

autocorrelation), if there are absolute constants 1B , 

2B  and 3B  such that 
 

)()|(|=)()|(| 2
1

2
mnmnnn pBp 




 
)()(2 mnmnmn qpB 


  

),()(3 mnmnmn qpB 


  
 

 
where |2=| 1

mn
nmn r 

    and |2=| 2
mn

nmn r 
    

for unspecified numbers 1r  and 2r .  

We observe from the references cited in [14] 
(resp. [15]) that for a positive integer n , there is a 

nonzero frequency n , in a 2 -stable cycle mode, 

so that the correlation (resp. autocorrelation) of np  

at n  dominates a universal constant multiple of 
n0.732 . 

It should not be surprising that there are 
similarities between the bounds for correlations and 

the bounds for autocorrelations of np  (both in 

absolute value). The lower bound result for 
correlation in [14] was achieved by the solution of 
the following (recurrence) system of three 

equations in three unknowns )()( 2
jjp  , 

)()( 2
jjq  , and )()( jjjqp   (for appropriate 

frequencies j ), 
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Similarly the lower bound result for 

autocorrelation in [13] was achieved by the solution 
of the following (recurrence) system of three 

equations in three unknowns )()|(| 2
jjp  , 

)()( jjjqp   and )()( jjjqp   (for 

appropriate frequencies j ), 
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In the following, we refer to the above two 

systems as the co-system and the auto-system 
respectively. The matrix equation of the co-system 
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is of the form 2= nn Aww , where A  is a 33  

nonsingular matrix. The eigenvalues 1 , 2  and 

3  of A  satisfy 
32 =  , ||=||>|| 321   and 

1.46
1 2|=|  . So, if   is the diagonal matrix 

having the eigenvalues of A  on its diagonal 
entries, then for odd n , there is an invertible S  

such that 0
12= wSSw

n

n
  with

 
Tw 0]1[1=0

, while 

for even n , 1
12

1

= wSSw
n

n




  with Tw 1]1[1=1 . 

2. Locating the appropriate frequencies by the 
representation 

In what follows, we present two different uses of 
the square representations. 

• Given any frequency of 2|| np  as input, the 

output is a system in 2 -stable cycle mode such that 
its equations are similar to those in the auto-system. 
• Locate the frequency (or frequencies) that the 
matrix of its system, in terms of eigenvalues, is 
similar to the matrix of the co-system.  

 

The square representations of 2|| np  and 2|| nq  in one step backwards are 

                                      
   np

nn qp 11                                   
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and the square representation of 2|| np  in two steps backwards is 
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In the following, z  is restricted to satisfy 1|=| z  

and we put n
nl 2=  for all n . The Rudin-Shapiro 

polynomials np  and nq  are of degree 1)( nl , 

and so the frequencies of 2|| np , nnqp  and nnqp  

must be integers in the closed (frequency) interval 

1],[1  nn ll . One can easily verify that 

0=)(2)|)((| 2 jzpn
  for all j  and 

n
n zp 2=(0))|)((| 2  . Moreover, )|(| 2

np  at 

the two endpoints of the frequency interval is either 
1  or 1 . We "divide" the frequency interval into 

eight open subintervals as follows: For each 
,7}{0,1,i  define 

 
}.)(4<<)(3:{= 22   nnnnin liliF 

 

 Because of what was said about the even 

frequencies, the odd frequencies in 
70

,, nn FF   

are of the interest. Now, in more detail, we are able 

to present the square representation of 2|)(| zpn  

with two steps backwards as follows: 
 
 
 

2

1np  11  nn qp  

11  nn qp  
2
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11  nn qp  
2

1nq  



 
 
 
319            IJST (2011) A4: 315-321 

 
 
 

0

2

3

4

2

2

2

2









n

n

n

n

l

l

l

l

                                                                                                                        

                              24  nl          23  nl             22  nl             2 nl                   
0

 
 

Suppose, for example, that 
0nn F  (top right 

square). Then )|(| 2
np  at n  is the same as 


 )( 22 nn qp  at 23  nn l . As another 

example, suppose that 
3nn F . Then the 

)|(| 2
np  at n  is 

  ]||2||[2 2
2

2
2 nn qp  

at n  (four diagonal squares) plus 
 )( 22 nn qp  at 

n  (the 1,2b  box). The plus and minus elements 

in the 0,1b  and 2,3b  boxes cancel out. We identify 

the frequency related to both 2
2 || np  and 2

2 || nq  

by 2n . We also identify the frequency related to 

both 22  nn qp  and 22  nn qp  by 2n . Given a 

frequency n  of 2|| np , there is an ,7}{0,i  

so that 
inn F  and there are constants A , B , 

C , and D  such that 

 
2 2

n n n 2 n 2

2
n 2 n 2

(| p | ) ( ) = A(| p | ) ( )

                     B(| q | ) ( )
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for appropriate 2n  and 2n . Depending on the 

location of n  in any of the sets 
0nF , 

1nF , 
2nF  

or 
3nF , Table 1 provides two frequencies '

2n  

and '
2n  together with the four constants in (3) . 

We omit the other four intervals 
4nF , 

5nF , 
6nF  

and 
7nF , because )()|(|=)()|(| 22 kpkp nn   for 

all k . 

Table 1. The value of each constant in (3) at different  

locations for the frequency n  
Location 

of n  2n  A  B  2n  C  D  

0nF  Does not 
exist 0  0  23  nn l  1  0  

1nF  
22  nn l  1 1  nnl 23  1  0  

2nF  
nnl 2

 1 1  2 nn l  0  1 

3nF  
n  2  2  n  0  1 

2
2 || np  22  nn qp  2

2 || np  22  nn qp  
0nF  

22  nn qp  2
2 || nq  22  nn qp  2

2 ||  nq  
1n

F  

2
2 || np  22  nn qp  2

2 || np  22  nn qp  
2nF  

22  nn qp  2
2 ||  nq  22  nn qp  2

2 || nq  
3nF  

7nF  
6nF  

5nF  
4nF   



 
 

IJST (2011) A4: 315-321                                                                                                                                             320 
 
 
 
For example, if 

2nn F , then 
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Locating noncentral frequencies at which the maximum (in modulus Fourier coefficients) occurs: At first, 

consider the representation of :|| 2
4p  
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3D  

 1 1 1 -1 
1D  

1 -1 1 1 1 1 -1 
2D  

-1 1    

 1 1 1 -1 1 
1D  

-1 1 1 1 1 -1 -1 
2D  

1 -1  

 -1 -1 -1 1 -1 -1 
1D  

-1 -1 -1 -1 1 1 1 
2D  

1  

 1 1 1 -1 1 1 -1 
1D  

1 1 1 -1 -1 -1 1 
2D  

 1 1 1 -1 1 1 -1 1 
1D  

1 1 -1 -1 -1 1 -1  

 1 1 1 -1 1 1 -1 1 1 
1D  

1 -1 -1 -1 1 -1  

 1 1 1 -1 1 1 -1 1 1 1 
1D  

-1 -1 -1 1 -1  

   -1 -1 1 -1 -1 1 -1 -1 -1 -1 
1D  

1 1 -1 1  

 -1   -1 1 -1 -1 1 -1 -1 -1 -1 1 
1D  

1 -1 1  

 -1 -1   1 -1 -1 1 -1 -1 -1 -1 1 1 
1D  

-1 1  

 1 1 1   1 1 -1 1 1 1 1 -1 -1 -1 
1D  

-1  

 -1 -1 -1 1   -1 1 -1 -1 -1 -1 1 1 1 -1 
1D   

 

It is formed by four 33 22   squares, each of 

which is formed by four 22 22   squares and so 
on. The maximum modulus Fourier coefficient is 
5 , and occurs at the frequencies 11 and 11 . 
These two frequency lines are shown by  s (each 
  has value 1 ). 

We only concentrate on the positive frequency 

11= . The central frequency line of the 2
4 || p  

representation is formed by 1D s. The 2D s form 

the central frequency line of the 33 22   square 

33qp  (see representation of 2|| np  in one step 

backward). The next two squares of size 22 22   

(for 22qp  square) and 22  (for 11qp  square) 

have central frequency lines 3D s and 4D s 

respectively. Each of the central frequency lines is 
located either above the frequency line   or 

below. We correspond the two digits 1 and 0  to 
the above and below positions respectively. Four 
position comparing of   with central frequency 

lines with the order 4D , 3D , 2D  and 1D  yield 

1011. 
Similarly, forming the square representation of 

2
6 || p  and 2

8 || p , we see that the maximum 

modulus Fourier coefficients occur at 43=  and 

171=  respectively. The central frequency line 

comparisons for 2
6 || p  give 101011 and for 

2
8 || p  give 10101011. Interestingly, the result in 

each case is the binary representation of  . So we 
suspect that, in general, the "maximum" may occur 
at the n  digit binary representation 10111010 . 
Solving the relation 12222= 1331   nn

n  

yields 1)(2
3

1
= 1 n

n , which is an integer whenever 
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n  is even. The same technique for odd n s yields 

1)(2
3

1
= n

n
. 

Suppose that n  is even. Define 
n 1

n

1
= (2 1)

3
  , 

which is clearly in 
1nF  and define n

n

1
= (2 1)

3
  . Then 

n 1
n 2 n n 2

1
= (2 1) = 2l

3


      and n 2
n 2 n 2 n

1
= (2 1) 3l

3


     . 

Therefore, n 2 n 2     and n 2 n 2    . Thus by (3)  

and Table 1, we have 
2 2 2

n n n 2 n 2 n 2 n 2 n 2 n 2(| p | ) ( ) = (| p | | q | ) ( ) (p q ) ( )  
           

                
2

n 2 n 1 n 2 n 2 n 2 n 2= 2(| p | l ) ( ) (p q ) ( ). 
        

  
Now, the first equation of the auto-system 

follows, since 0=)()( 22 


 nnl  . Because of the 

second term in that equation, we consider the 

square representation of nnqp  with two steps 

backward. Our interest is the frequency 

1)(2
3

1
= n

n .

  
  

n

nn

q

q

nn

p

nn qpqp
11

2222

 

   

 
 
 
 

                                                 
 

                       np           

 
 
 

Since n  lies in 
2nF , we have 

 

)()||||(=)()( 2
2

2
2

2 



  nnnnnn qpqp   

                      ).()(2 22222 


  nnnnn qpqp 
 

 
Therefore we have the second equation of the 

auto-system. Similarly, from the square 

representation of nnqp , we easily get the third 

equation of auto-system, as desired. 
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