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Abstract

Let M be a lattice module over the multiplicative lattice L. An L —module M is called a multiplication lattice

module if for every element N € M there exists an element @ € L such that N = aly,. Our objective is to
investigate properties of prime elements of multiplication lattice modules.
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1. Introduction

A multiplicative lattice L is a complete lattice in
which there is defined a commutative, associative
multiplication which distributes over arbitrary joins
and has greatest element 1, (least element 0;) as a
multiplicative identity (zero). For L a multiplicative
lattice and a €L, L/a={beL:a<b} is a
multiplicative lattice with multiplication ¢ od =
cd V a. Multiplicative lattices have been studied
extensively by E. W. Johnson, C.Jayaram, the
current authors, and others, see, for example,
[1-8].

An element a € L is said to be proper if a < 1.
An element p < 1in L is said to be prime if ab < p
impliesa <p or b <p. Anelement m < 1in L is
said to be maximal if m < x < 1 implies x = 1. It
is easily seen that maximal elements are prime.

If abbelongto L, (a: b) is the join of all c € L
such that ch < a. An element e of L is called meet
principal if a/Abe = ((a:e)/\b)e for all a,b € L.
An element e of L is called join principal if
((aevb):e) =aV(b:e)forallabeL e€Lis
said to be principal if e is both meet principal and
join principal.

e € L is said to be week meet (join) principal if
alNe =e(a:e) (aVv (0,:e) = (ea:e)) for all
a € L. An element a of a multiplicative lattice L is
called compact if a <V b, implies a < by, V by, V
..V by, for some subset {ay,ay,..,a,}. If each
element of L is a join of principal (compact)
elements of L, then L is called a PG-lattice
(CG —lattice ).
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A multiplicative lattice L is called an r —lattice if
it is modular, principally generated, compactly
generated and has 1; compact.

Let M be a complete lattice. Recall that M is a
lattice module over the multiplicative lattice L, or
simply an L —module in case there is a
multiplication between elements of L and M,
denoted by [B for | € L and B € M, which satisfies
the following properties:

() (Ib)B = 1(bB) ;

(it) (Vo L) (Vg Bg) = Va5 Lo Bp:

(iii) 1,B = B;

(iv) 0,B = Op;

forall [,1,,b in L and for all B, Bg in M.

Let M be an L —module. If NEM and b €L,
(N : b) is the join of all X € M such that bX < N.
An element e € L is said to be M — principal if
ANeB = e((A:e)AB) and ((eAVB):e)=AV
(B:e) for all A,B € M. If each element of L is a
join of M —principal elements of L, then L is called
M —principally generated [see, 9].

Let M be an L —module. If N,K belong to M,
(N:K) is the join of all @ € L such that aK < N.
An element N of M is called meet principal if
(bA(B:N))N = bNAB for all b €L and for all
B € M. An element N of M is called join principal
if bV (B:N) = ((bN VB):N) forall b € L and for
all N € M. N is said to be principal if it is both meet
principal and join principal. In a special case an
element N of M is called weak meet principal
(weak join principal) if
(B:N)N = BAN ((bN:N) = bV (0y:N) ) for all
B €M and for all b€ L. N is said to be weak
principal if N is both weak meet principal and weak
join principal.
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Let M be an L —module. An element N in M is
called compact if N <V, B, implies N < Bg,
VBg, V..V B, for some subset {al,az, ...,an}.
The greatest element of M will be denoted by 1,,. If
each element of M is a join of principal (compact)
elements of M, then M is called a PG —lattice
(CG —lattice). M is called an R-lattice if it is
modular, principally  generated, = compactly
generated and has 1, compact.

Let M be an L —module. An element N € M is
said to be proper if N < 1. If (04:1y) =0,
M is called a faithful L-module. If cm = 0y
implies m =0y, or ¢ =0, for any c €L and
m € M, M is called a torsion-free L-module.

For various characterizations of lattice modules,
the reader is referred to [10 — 14].

2. The prime elementsin lattice modules

Definition 1. Let M be an L —module. An element
N < 1, in M is said to be prime if aX < N implies
X<N or aly, <N, ie a<(N:1y) for every
a€eLl,XeM.

Let M be an L —module. If N is a prime element
of L —module M, then (N:1,) is a prime element
of L [11, Proposition 3.6].

Example 1. Let L be an L —module. If p € L is a
prime element, then p is also a prime element as an
L —module .

Example 2. Let M be anL —module. If L =
{0,,1,} is a field, then every element of M is a
prime element.

Definition 2. Let M be an L —module. An element
N < 1, in M is said to be primary, if aX < N and
X £ N implies a*1,, <N, for some k>0 i.e
ak < (N:1,) foreverya € L,X € M.

Proposition 1. Let M be an L —module and
N < 1) be an element of M. If (N:1,,) is a prime
element of L and N is primary, then N is prime.

Proof: LetaX < Nand X £ N fora € Land X €
M. Since N is primary, aX < N and X £ N implies
ak1,, <N, for some k>0 ie a* < (N:1y).
Since (N:1, ) is a prime element of L, a <
(N:1,). Consequently, N is prime element of M.
Let M be an L —module and N € M. Then M/N =
{BeEM:N<B} is an L —module with
multiplication ce D = ¢D V N for every ¢ € L and
for every N <D € M. Similarly, M/N is an
L/(N:1y)-module with ao N* =aN*Vv N for all
N<N*€Mand (N:1y) <a.

Theorem 1. Let M be an L —module and N € M.
Then N is a prime element if and only if M/N is a
torsion-free L/(N: 1,,)-module.

Proof: Suppose that N € M is a prime element. For
(N:1y)<a in L and N <N*in M, if ae N* =
aN*V N = N, we have aN* < N. Since N is prime,
a = (N:1,). Conversely, suppose that M/N is a
torsion-free L/(N:1,)-module. If aX <N and
X< Nfora€eland X €M, then (aV (N:1y)) e
(XVN)=N. Since M/N is a torsion-free L/
(N:1,) -module, a < (N: 14).

Lemma 1. Let M be an L —module and let B be an
element of M. If 1,, is weak principal, then there
exists a lattice isomorphism M/B = L/(B:1,).

Proof: [see 11, Lemma 2.1].

Let M be an L —module. Recall that an element
N <1, of M is called a maximal element if for
every element B of M such that N < B, then either
N =BorB =1,.

Proposition 2. Let M be an L —module and N €
M. Then,

(i) If (N:1,,) is maximal in L, then N is prime in
M.

(ii) If a is maximal in L and al, < 1,, then aly,
is prime in M.

(iit) If N is maximal in M, then N is prime in M.

Proof: (i) If (N:1,) is maximal in L, then
L/(N:1y) is a field. Then M/N is a torsion-free
L/(N:1,) — module and hence N is prime in M by
Theorem 1.

(ii) Since a < (aly:1y) < 1, and ais maximal in
L, a = (aly:1,). This implies that al,, is prime
in M by (0).

(iii) Let aX <N and X £ N for a€ Land X €
M. Since N is maximal, NVX =1, and so
aNVvaX =aly <N. This implies that a <

(N:1,).

Theorem 2. Let L be an r— lattice and
M —principally generated, and M be an R- lattice
L —module. If pl, is compact for every prime
element p€ L, then every element in M is compact.

Proof: Let Q={K € M:K is not compact}.
Suppose that Q # @. Since 1,, is compact, Q has a
maximal element by the Zorn Lemma. Suppose that
N is a maximal in Q.

Let p = (N:1,). We first show that p is prime. If
p is not prime, there exists M-principal elements
a,b € L such that a £ p, b £ p and ab < p. Hence
N < NValy. Therefore NVal, is a compact
element of M. Since (ab)1y <N, b1, < (N:a).
Then N < NV b1, < (N:a) Hence (N:a) is also
compact. Since N =V C, is compactly generated,
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then NValy, = (Vfinite Ca) Valy and we have
N = (Vfim-te C,) V (alyAN). Since a is an M-
principal element of L, alyAN = a(N:a). Since
(N:a) is the finite join of principal elements of M
and a is M-principal element in L, a(N:a) is
compact [9, Proposition 1 and Proposition 3].
The finite join of compact elements is compact, so
N is compact. This contradiction shows that p is
prime.

Since 1, is compact, 1, is a join of finite
principal elements K;. Then p = (N:1y) =
(NViinite Ki) = Asiniee(N:K;) and p = (N:K;)
for some K; £ N, since p is prime. Hence N < N V
K; is compact and as is shown in the preceding
paragraph, N = (vﬁm-te Ca) v (Kj/\N) and
K,AN = (N:K;)K; = pK;. Since N =
(Vfinite Ca) VpK; < (Vfinite Coz) Vply <N, N =
(Vﬁm-te Ca) V pl, is compact by hypothesis. This
is a contradiction. Therefore, Q is empty.

3. Multiplication lattice modules

In this section we study the concept of
multiplication lattice module over a multiplicative
lattice and generalize the important results for
multiplication modules over commutative rings,
obtained by Z. A. El-Bast and P. F. Smith [15], to
the lattice modules over multiplicative lattices.

Definition 3. Let M be an L —module. If 1, is a
principal element in M, M is called a cyclic lattice
module.

Definition 4. An L —module M is called a
multiplication lattice module if for every element
N € M there exists an element a € L such that
N =aly.

Proposition 3. Let M be an L —module. Then M is
a multiplication lattice module if and only if
N = (N:1,)1, forall N € M.

Proof: =: Let M be a multiplication lattice
L —module and N € M. Then, N = al, for some
a€L. Hence a<(N:1y)and so N =aly <
(N:14)1, < N. Therefore N = (N: 1,,)1,.

< : Clear.

It is clear that an L —module M is a multiplication
lattice module if and only if 1, is weak meet
principal. If M is a cyclic lattice L —module, then M
is a multiplication lattice L —module.

Proposition 4. Let M be a multiplication lattice
L —module. If p € L is maximal and pl, < 1,
then p1,, is maximal element in M.

Proof: Since p is maximal such that p <
(ply:1y) =1, p= ((ply:1y). Let ply, <B.
Then p = (ply:1y)<(B:1y). Since p is
maximal, p = (B: 1)) or (B:1,) = 1,. Therefore,
ply = (B:1,)1y =B or (B:1,)1y =B = 1,.
Consequently, p1,, is maximal element in M.

Theorem 3. Let L be a multiplicative lattice with
1, compact, and M be a non-zero multiplication
PG —lattice L —module. Then M contains a
maximal element.

Proof: There exists a non-zero principal element X
in M. Let p € L be a maximal element such that
(0py: X) < p. We show that ply < 1. Suppose
that p1, = 1,. Since M is a multiplication lattice
L —module, X =al, for some a € L. Then
pX =aply =aly =X and so 1, = (pX:X) =
pV (0y:X) = p. This is a contradiction. Since p is
maximal and pl,, < 1, ply is maximal in M by
proposition 4.

Theorem 4. Let L be a PG —lattice with 1,
compact, and M be a PG —lattice L — module.
Then M is a multiplication lattice L —module if and
only if for every maximal element q € L,

(i) For every principal element Y € M, there exists
a principal element qy € L with gy % q such that
qyY = 0y or

(ii) There exists a principal element X € M and a
principal element b € L with b £ g such that
b1, < X.

Proof: = : Let M be a multiplication lattice
L —module. We have two cases.

Case 1. Let ql, =1, where g is a maximal
element of L. For every principal element Y € M,
there exists an element a € L such that Y = al,,.
Then Y =al, =aqly =qY. Therefore, 1, =
(qY:Y) = q Vv (04:Y). Hence (0y:Y) £ q. There
exists a principal element qy such that gy, <
(0y:Y) and gy £ q. Consequently, qyY = 0, and
Qv * 9.

Case 2. Let qly < 1,. There exists a principal
element X € M such that X = j1, % ql,, with
Jj €L,j % q. There exists a principal element b € L
with b < jand b % q. We obtain b1, < j1,=X
<—: Let N € M.Put a = (N:1,). Clearly al, =
(N:1))1y < N. Take any principal element
Y < N. We will show that (al,:Y) = 1;.

Suppose there exists a maximal element q € L
such that (al,,:Y) < q. We have two cases.

Case 1. Suppose that (i) is satisfied. There exists
a principal element gy € L with qy £ q such that
qyY = 0y for every principal element Y € M. Then
qy < (04:Y) < (al,:Y) <q. This is a
contradiction.
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Case 2. Suppose that (ii) is satisfied. There exists
a principal element X € M and a principal element
bel with b<£q such that bl <X. Then
bN <bly, <X for any N€ M. Since X is a
principal element of M,bN = (bN:X)X. Then
b(bN:X)1,, < (bN: X)X =bN <N and SO
b(bN:X) < a = (N:1,). Therefore, b?Y < b2N =
b(bN: X)X <aX <al, = b?2<(al,:Y)<q.
Since q is maximal (and so, the prime) element of
L, b < q. This is a contradiction.

Recall that a multiplicative lattice L is called local
if it contains precisely one maximal element.

Corollary 1. Let L be a multiplicative lattice with
1, compact. Let M be a multiplication PG —lattice
L —module. If (L, p) is a local PG —lattice, then M
is a cyclic L —module.

Proof: Suppose that M # {0}. First, assume that
there exists a principal element qy € L with gy £ p
such that q,Y = 0, for every principal element
Y € M. Since (L, p) is a local lattice, g, = 1,. Then
every principal element Y =0, This is a
contradiction.

Now assume that there exists a principal element
X € M and a principal element b € L with b £ p
such that b1y, <X. Since b%tp b=1;.
Therefore, 1,, = X is principal.

Corollary 2. Let L be a PG —lattice with 1;
compact, and M be a PG —lattice and CG —lattice
L —module. Suppose that 1, =V, Y; for some
principal elements Y; in M. Then M 1is a
multiplication lattice L —module if and only if there
exist a; € L such thatY; = a;1,, foralli € [.

Proof: = : Clear.

< Suppose that there exist a; € L such that
Y, =q;1y foralli € I. Let g be a maximal element
in L. We have two cases.

Case 1. Suppose that a; < g for all i € [. Then
1y =Vier Vi =Vier (@i1y) = (Vigr a1y < qlp.
Hence 1, = g1, and Y; = qY;. Therefore, there
exists a principal element gy, % g, with qy,Y; = 0y
for all i € as is shown in the theorem. Let X be
any principal element in M. Since X < 1y =V, Y;
and X is principal, X is compact and so X < V., Y;
[13, Corollary 2.2]. Put t = qy,qy, ... qy,. Then
tX <t(V,Y;)) =0y and t <£gq. Since, finite
product of principal elements is principal, t is
principal. So M is a multiplication lattice
L —module by theorem.

Case 2. Suppose that a; % g for some j € I. Then
there exists a principal element b; € L with b; < a;
and b; % q such that b;1y < a;1,, =Y;. Therefore,
M is a multiplication lattice L —module by theorem.

Theorem 5. Let L be a PG —lattice with 1,
compact, and M be a faithful multiplication
PG —lattice L —module. Then the following
conditions are equivalent.

(i) 1, is a compact element of M.

(ii) If a,c € L such that aly < c1y,thena<c.
(iii) For each element N of M there exists a unique
element a of L such that N = al,,.

(iv) 1) # aly, for any proper element a of L.

(v) 1, # p1,, for any maximal element p of L.

Proof: (i) = (ii): Suppose 1,, is compact. Let a
and c be elements of L such that aly < cly. We
will show that (c:a) = 1,. Suppose that (c:a) #
1;. Then there exist a maximal element p of L such
that (c: a) < p. We have two cases.

Case 1. Suppose that 1, =ply. Then Y =
a'ly =a'ply =pa'ly =pY for any principal
element Y € M. Then 1, = (pY:Y) =p VvV (04:Y)
for all principal elements Y € M. Since 1, is a
compact element of M, 1, =VE,Y; for some
principal elements Y; of M. For any principal
elements Y;(1<i<k), 1,=@Y:Y)=pV
(0:Y;) and so (0y:Y;)£p. Therefore, there exist
qy; < (0y:Y;) such that gy, £p for all i€
{1,2,..,k}.  Hence qy¥;=0, and so
(ITf=1ay,)1y = Oy. Since M is a faithful
L —module, [T, qy, =0, <p, and p is a prime
element of L, so gy, < p for some i € {1,2,...,k}.
This is a contradiction.

Case 2. Suppose that p1,, < 1. There exists a
principal element X € M and a principal element
s € L with s £ p such that s1,, < X.

Suppose that o is any principal element of L such
that o < a. Then, aly < aly < cly. Therefore,
saX < saly <saly < scly <cX. Since X is a
principal  element of M, saV(0y:X)=
(saX:X) < (cX:X)=cVv (0y:X). Hence s?aV
5(0p:X) <scvVs(0y:X). But s(04,:X)=0,.
Indeed, let r < (0p:X). Since sly < X,rsly <
rX = 0y and so rs < (0y: 14). Since M is faithful,
(0p:1y) = 0;. This implies that s(0y:X) = 0,.
Then s?a < sc < ¢ for any principal element a< a
and so s?a < c. Then s2 < (c:a) < p. Since p is a
prime element of L, s < p. This is a contradiction.
(i) = (iii) = (iv) = (v): Clear.

(v) = (i): Suppose 1, # p1,, for every maximal
element p of L. Let g be a maximal element of L.
Since ql, < 1, there is a principal element
Y, £qly. Since M is a multiplication lattice
L —module, (Yq: 1M) % q. There is not a maximal
element such that Vgpmay (Yq: 1M) <gq. This
implies that Vg max (Yq: IM) =1;. Since 1; is
compact, we have finitely maximal elements g;
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such that 1, = V{-‘zl(Yqi: 1M). Since Y, =
(Yo 1) Las 1y = VI, Y.

Theorem 6. Let L be a PG-lattice with 1, compact
and M be a PG —lattice L —module. Let M be a
multiplication lattice L —module. Suppose that p is
a prime element in L with (0p:1y) <p. If
aX < ply where a € L,X € M, then X < pl, or
asp.

Proof: We may suppose that X is principal in M.
Suppose that aX < p1, with a £ p. We will show
that (ply:X) = 1,. Suppose that there exists a
maximal element q € L such that (p1,:X) <gq.
We have two cases.

Case 1. If there exists a principal element gy € L
with gy £ q such that 0, = qxX, then qy <
(04:X) < (p1y:X) < q. This is a contradiction.
Case 2. If there exists a principal element ¥ € M
and a principal element b € L with b % g such that
bly <Y, then bX< b1, < Y. Since Y is principal,
bX = (bX:Y)Y.Put (bX:Y) = s. Then abX = asY.
Since Y is join principal, (asY:Y) = as V (04:Y).
Since Y is meet principal, abX = (abX:Y)Y. Put
¢ = (abX:Y). Since cY = abX < bply <pY,cV
(0y:Y) = (c¥:Y) < (pY:Y) = p Vv (0y:Y).Since
b(0,:Y)1y = (0,: V)bl < (0,: Y)Y = 0,,
b(04:Y) < (04:1,) <p. Hence bc vV b(0y:Y) <
bp Vv b(0y:Y) <p. Therefore, bc <p. On the
other hand, ¢ = (abX:Y) = (asY:Y)=asV
(0y:Y) and so abs < absV b(0y:Y) = bc < p. If
b<p, then b<p<(ply:X)<gq. This is a
contradiction. Therefore b % p. Since p is prime,
s < p. Therefore, bX =sY <pY <ply and so
b < (p1y:X) < q. This is a contradiction.

Corollary 3. Let L be a PG-lattice with 1,
compact. Let M be a multiplication PG —lattice
L —module and N < 1,. Then the following
conditions are equivalent.

(i) N is a prime element in M,

(it) (N:1,,) is a prime element in L,

(iit) There exists a prime element p in L with
(0p:1y) < psuchthat N = pl,,.

The authors wish to thank the referee for his
assistance in making this paper accessible to a
broader audience.
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