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Abstract 

In this work we investigate the thermal entanglement between two-level atoms and photons in a nonlinear cavity. 

We consider intensity-dependent couplings and calculate the negativity, as a measure of atom-photon 

entanglement. The cavity is assumed to be at a temperature T, so that all number of photons, and at the same time, 

both atomic states, with definite probabilities, are present. We then demonstrate a condition under which the 

intensity-dependent coupling leads to entanglement. It is also shown that, as in the case of linear Jaynes-

Cummings model, the thermal states of atoms and photons are never separable. 
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1. Introduction 

Quantum entangled states have been well 

established to form the corner stone of quantum 

information processing, including quantum 

communication, quantum teleportation, 

cryptography, etc. [1-4]. In fact, for such purposes 

it is required that physical information contained in 

a composite system be either local or distributed 

amongst the subsystems, giving rise to entangled 

states. The research on the entanglement then 

focuses on two subjects: How the entanglement is 

implemented and how it may be quantified [5, 6]. 

One approach to realize entanglement for 

quantum information processing is cavity quantum 

electrodynamics [7]. In this approach, the 

interaction of material qubits (Rydberg quantum 

states) with a high finesse optical resonator is used 

for atom-atom, atom-photon or photon-photon 

entanglements [8]. The main challenge in this 

approach is to avoid de-coherence induced by the 

cavity modes that leak to the environment. On the 

other hand, interaction with the environment, as a 

heat reservoir, is also responsible for the de-

coherence of entangled states [9]. It is therefore the 

main purpose of the present work to investigate 

entanglement between atomic states (two-level) and 

photons, inside a cavity filled by a nonlinear 

dielectric. To be specific, it is assumed that the 

cavity walls are held at a temperature T, so that 

both atom and field are in thermal states. Here, the 
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entanglement occurs between the thermal atomic 

and photonic states [10, 11]. In [11], however, the 

entanglement of two-level atoms (not being in 

thermal states) and photons (being in thermal 

states) is reported. In the present work the 

occurrence of a particular combination of atomic 

and photonic states is weighted by the Maxwell 

factor.  

Even though there are several measures to 

determine the entanglement (inseparability) of 

mixed states, we use the concept of negativity [12], 

which proves to be more suitable for the problem in 

hand. A bipartite quantum system is disentangled 

(separable) if its density matrix can be written as 

A B
i i i

i

pρ ρ ρ= ⊗∑ , where 0ip ≥ , 1i
i

p =∑  

and ,AB
iρ  represents the density matrices for the 

subsystems.  

The elements of ρ  is given by , ,a b a bρ ′ ′  

where { }a  and { }b  form the orthonormal basis 

for each subsystem. It has been shown that for the 

composite system to be separable, it is necessary 

that the partially transposed density matrix, defined 

as, ( )
, : ,

, , , ,PT

a b a b
a b a b a b a bρ ρ ρ

′ ′
′ ′ ′ ′= = , 

has no negative eigenvalues [13]. Conversely, if 

PTρ  possesses even a single negative eigenvalue, 

then the quantum system is entangled (inseparable). 

Quantitatively, this criterion may be expressed in 

terms of the negativity, defined as 

(0, )nn
N Max λ= −∑ , where nλ ’s are the 
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eigenvalues of PTρ . It then follows that the state of 

the composite system is separable (disentangled) 

when the negativity is null, otherwise it is entangled 

[14]. The aforementioned criterion becomes a 

sufficient condition for 2×2 or 2×3 bipartite 

quantum systems [15]. We thus calculate the 

negativity as a measure of entanglement between 

thermal atoms and photons for different types of 

nonlinearities. 

We proceed to calculate the negativity and 

analytically show that for intensity-dependent 

couplings of the  form ( )† 1
c

a a + , in which 

( )†a a is the photonic annihilation (creation) 

operator, the system of thermal atom-photon is 

entangled at all temperatures (except at absolute 

zero and infinity) for 
1 1

2 2
c

−
< < . Intensity-

dependent couplings have been shown to arise from 

deformed oscillators commutation relations, inside 

nonlinear dielectrics [16]. This particular form has 

also been used in [17-19]. 

The remainder of this article is organized as 

follows: In Section 2 we present the model along 

with the corresponding Hamiltonian. The 

dependence of negativity on temperature is 

investigated in Section 3. The atom-photon 

entanglement with nonlinear intensity-dependent 

coupling of the form( )† 1
c

a a +  is investigated in 

Section 4. Finally, concluding remarks are made in 

Section 5.  

2. �onlinear Jaynes-Cummings model 

The system of two-level atoms, interacting with a 

single-mode quantized radiation field, is described 

by the celebrated Jaynes-Cummings Hamiltonian 

which, in a nonlinear medium and in the rotating 

wave approximation, reads [18],  
 

†

† † †

1

2
( ( ) ( )),

zH a a

g f a a a a f a a

σ ω

σ σ+ −

= Ω + +

+

ℏ ℏ

ℏ

                            (1) 

 
where a(a

†
) is the field annihilation (creation) 

operator, zσ and σ±  are the pseudo spin matrices. 

In equation (1) ω and Ω are, respectively, the field 

and atomic transition frequencies and †g f(a a) is 

due to intensity-dependent coupling. 

In terms of atom-field bare states, { },n +  and 

{ },n − , where { }n  is the field number states 

and ( )+ −  describes the atomic upper (lower) 

state, the Hamiltonian of equation (1) becomes, 
 

0

1
0, 0, ,

2 n
n

H H
∞

=

= − Ω − − +∑ℏ                     (2) 

 
where, 
 

( )

1
, ,

2
1

( 1) 1, 1,
2

( ) 1 , 1, 1, , .

nH n n n

n n n

gf n n n n n n

ω

ω

 = + Ω + +   
 + + − Ω + − + −   

+ + + + − + + − +

ℏ ℏ

ℏ ℏ

ℏ

(3) 

 

From equations (2) and (3) it is noted that 0,− , 

which is separable, forms the ground state. 

Furthermore, it is also noted that the presence of 

( )f n , depending on its form, may decrease or 

increase the degree of entanglement. This point 

shall be addressed again in sections 4 and 5. In the 

bases formed by the bare states, each nH  is a 2×2 

matrix, which may be diagonalized separately. 

Diagonalizing each block gives the orthonormal 

dressed states as,  
 

1 1 2

2 2 1

, 1,

, 1, ,
n n n

n n n

u n u n

u n u n

ψ

ψ

= + + + −

= + − + −
                 (4) 

 
where 
 

( )

2 2 2

1
2

2 2 2 1
1 2

2
2 1

( )( 1)
,

( )( 1) ( )
2

1 ,

n

n

n n

g f n n
u

g f n n E n

u u

δω

+
=

+ + − + +

= −

ℏ

ℏℏ ℏ

  (5)

 

 
along with the dressed energies,  
 

1 ,2

2 2 2

1

2

4( 1) ( ) ,  
2

n nE n

n g f n

ω

δ

 = +  ±   

+ +

ℏ

ℏ
                                (6)

 

 

where ( )δ ω= Ω−  is the detuning.  

In the next section the thermal density operator 

(matrix) and partially transposed one, formed by the 

dressed states and dressed energies (equations (4) to 

(6)) are calculated. 

3. Atom-photon thermal states 

The atom-field thermal state, in equilibrium with 

the environment at temperature T , is given by,  
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1

0 1,2

( ) ,inE
in inZ

n i

T e βρ ψ ψ

∞
−

= =

= ∑ ∑                 (7) 

 

where 
0 1,2

inE

n i

Z e β
∞

−

= =

= ∑ ∑  is the partition 

function, 
1

kT
β =  and the dressed states and 

energies are given in equations (4) to (6), 

respectively. The corresponding partially 

transposed (with respect to the atomic states) 

density operator, defined as 

, , , ,PTi n j m j n i mρ ρ=  with ,i j = ± , 

upon using equations (4) to (7), becomes, 
 

0
0

0 1
0

1
( ) 0, 0, ( )

1
[ 0, 0, { , , 1, 1,

( , 1, 1, , )}] ,

PT PT
n

n

n n
n

n

T A T
Z

A A n n B n n
Z

C n n n n

ρ ρ

∞

=

∞

+
=

  ≡ − − +    

= − − + + + + + − + −

+ − + + + + + −

∑

∑

(8) 

 
where, 
 

1
2

1 2

1 2

1 2

0

2 2
1 2 1

2 2
1 2

1 2 ( ).

n n

n n

n n

E E
n n n

E E
n n n

E E
n n n

B e

B u e u e

A u e u e

C u u e e

β

β β

β β

β β

Ω

− −
+

− −

− −

=

= +

= +

= −

ℏ

                          (9) 

 

Again, each ( )PT
n Tρ is a 2 × 2 matrix, whose 

eigenvalues are easily obtained as, 
 

( ) 2 2
1 1 1( ) 4( )

.
2

n n n n n n n
n

B A B A B A C

Z
λ

+ + +±
+ ± + − −

= (10) 

 

Clearly, only nλ
− , which may assume negative 

values, is relevant to the negativity. As we shall see 

in the next section, one can analytically determine 

the sign of nλ
− , indicating the conditions under 

which atom-photon entanglement forms. Moreover, 

we also present numerical analysis of nλ
−

 
and 

thereby the negativity, confirming our analytical 

results in this section. 

4. Atom-photon entanglement 

The aim of this section is to check the sign of
 nλ
−  

and thus determine the conditions under which the 

system of atoms and photons is entangled. 

It is clear from equation (10) that nλ
−  

 
is negative 

if and only if, 
 

2
1 0 ,n n nB A C+ − <                                           (11) 

which, upon using equations, (5), (6) and (9), 

becomes, 
 

2 2 2 2

2 2

2 2

2 2

2 2

2 2

2 2

2

2 2 2 2

cosh( 4 ( 1))cosh( 4( 2) ( 1))
2 2

sinh( 4 ( 1))
24 ( 1)

cosh( 4( 2) ( 1))
2

sinh( 4( 2) ( 1))
24( 2) ( 1)

cosh( 4 ( 1))
2

[ 4 ( 1)][ 4( 2) ( 1)]

s

x x
n f n n f n

x
nf n

nf n
x

n f n

x
n f n

n f n

x
nf n

nf n n f n

∆ + − ∆ + + +

∆
+ ∆ + −
∆ + −

∆ + + +

∆
− ∆ + + +
∆ + + +

∆ + −

∆
−
∆ + − ∆ + + +

2 2 2 2

2
2 2 2

2 2

inh( 4( 2) ( 1))sinh( 4 ( 1))
2 2
4( 1) ( )

sinh ( 4( 1) ( )) 0 ,
24( 1) ( )

x x
n f n nf n

n f n x
n f n

n f n

∆ + + + ∆ + −

+
− ∆ + + <
∆ + +

(12) 

 

where x gβ= ℏ  determines the atom-field 

coupling energy relative to the thermal energy and 

g

δ
∆ =  is the scaled field mode detuning. If the 

atom and field are in resonance, 0∆ = , equation 

(12) simplifies to, 
 
2 ( ) ( ) 2 ( ) ( )

( ) ( )

( 1) ( 1)

2 0

xf n x n xf n x n

x n x n

e e e e

e e

α α

γ γ

− −

−

− + −

+ + + <

ɶ ɶ

        (13) 

 

where ( ) 1 ( )f n n f n= +ɶ , 

( ) ( 1) ( 1)n f n f nγ = + − −ɶ ɶ  and, 

 

2

2

( ) ( 1) 2 ( )

( 1) ( ) .

n f n f n

d
f n f n

dn

α = + − +

− ≅

ɶ ɶ

ɶ ɶ
                             (14) 

 
From equation (13) it is evident that when 

( ) 0nα ≥ , then nλ
−

 
is never negative and 

consequently the system of atom-field is separable 

(unentangled). On the other hand, when ( ) 0nα <  

for all n ’s, then the sign of nλ
−  depends upon 

2 ( )xf nɶ  (see the first term of equation (13)). That is, 

if 2 ( )xf nɶ  is relatively large, then for some n  (and 

thereafter),
 

nλ
−  is negative and the system of atom-

field is inseparable (entangled). It is then concluded 

that for intensity-dependent coupling, ( ) 0nα < , as 

defined in equation (14), forms a necessary 

condition for the photon-atom entanglement to 

occur. As a specific example and to support the 

above conclusions, we take the widely used 

expression of the type [17-19], ( ) ( 1)cf n n= + , 

where c  is an arbitrary constant.  
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Fig. 1. Plots of nλ
−

 versus photon numbers for scaled temperature , 2x = . Dotted line; 0c = , dashed line; 1

4
c = , and solid 

line; 1

2
c = . The inset indicates that the negative eigenvalue for 1

4
c =  remains negative for large n  

 
This type of nonlinearity is of great interest in 

applications to two-photon micromasers [19, 20], 

atom-photon interaction inside photonic crystals 

[21, 22] and construction of photonic gates [23]. 

Using equation (14), one finds, 
 

3
( )
2

1 1
( ) ( )( )( 1)

2 2

c
n c c nα

−
= + − + ,                 (15) 

 

which is negative for 
1 1

2 2
c

−
< <  only. 

Furthermore, with this range of values for c , 

( )
1

22 ( ) 2 1
c

xf n x n
  +   = +ɶ  definitely becomes 

large, so that the system of atom-field is entangled 

(inseparable). The conclusion that, for 

1 1

2 2
c

−
< < , the system of atom-photon is 

entangled holds for all temperatures (expect at 

absolute zero and infinity). Verification of this point 

follows. Using

1

2( ) ( 1)
c

f n n
+

= +ɶ , an expansion of 

( )nα , defined in equation (14), for 1n >>  leads 

to 
 

3
2 2
1

( ) ( )( 1)
4

c
n c nα

−
≈ − +                            (16) 

 
which, upon inserting into equation (13), neglecting 

the second term and using the fact that,  
 

( )
3

( ) 21 2 1
c

ne c nγ

  −  ±  ≅ ± +                            (17) 

 

(with 

1

2( ) (2 1)
c

n c nγ
−

≈ + , for 1n >> ), the 

condition of equation (13)becomes, 
 

1

2

3
2 2 ( 1) 2

1 1
1 ( ) ( 1) 0.
4 4

c c
x nc x e n

+ −
++ − + <      (18) 

 
It is evident from equation (18) that for 

1 1

2 2
c

−
< <  the second term is always negative 

and grows rapidly, regardless of the temperature 

(x ), as the number of photons increases. Thus, for 

1 1

2 2
c

−
< <  the system of atom-photon in the 

presence of intensity-dependent coupling is 

inseparable (entangled) at any temperature. One 

may rather easily check the condition of equation 

(13) for the case 

1

2( ) ( 1)f n n= +  and 

1

2( ) ( 1)f n n
−

= + , which give: cosh(2 ) 1 0x + >  

and 2 2cosh ( ) sinh ( ) 1 0x x− = > , respectively. 

These conclusions are confirmed from 

considerations of Figs. (1) to (3). The figures are 

drawn for a typical value of atom-field linear 

coupling, 2g = . Moreover, these illustrations are 

based on Eq.(10) for the negative eigenvalues and, 

when necessary, summations over n  are carried 

out up to 1000n = . In Fig. (1) plots of nλ
−

 
as a 

function of photon number, at a fixed temperature 

corresponding to 2x = , are presented. From this 
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Fig. 2. Plot of negativity versus the parameter c , for scaled temperature, 2x =  
 

 
Fig. 3. Plot of negativity versus the scaled temperature, x . Solid line;  

0.1c = , dotted line; 0c =  and dashed line; 0.1c = −  
 
figure it is clear (at least for 2x = ) that 

nλ
− becomes negative for 

1 1

2 2
c

−
< <  only. In 

Fig. (2) the negativity, (0, )n
n

Max λ−−∑ , as a 

function of c , is plotted. It is again observed from 

this figure that the system of atom-photon is 

entangled for 
1 1

2 2
c

−
< < . We present the 

behavior of negativity, as a function of x (inverse 

temperature) for 0.1, 0c = ±  in Fig. (3). This 

figure clearly indicates that the system of atom 

photon, even at very high temperature (low x ) is 

entangled. Furthermore, from this figure it is 

observed that the entanglement is enhanced for 

larger c ’s (within the admissible range) due to 

stronger couplings. The figure is also consistent 

with the commonly accepted fact that the maximal 

entanglement occurs at higher temperature for 

higher couplings. It is also pointed out that for 

0c = , as the dotted line in Fig. (3), the case of 

linear JCM is reproduced [10]. 

5. Conclusions 

In this paper we have reported the characteristics of 

entanglement between thermal states of two-level 

atoms and photons in a nonlinear medium, through 

the calculation of negativity, as a measure of it. The 

nonlinearity we consider is an intensity-dependent 

coupling. From the material and graphs presented in 

sections 4, the following points are observed. 

One may define a parameter, ( )nα , with n  the 

number of thermal photons, which asymptotically 

approaches the second derivative of 

1 ( )n f n+ ( ( )f n  describes the intensity-

dependent coupling). It then follows that a 

necessary condition for the formation of 

entanglement between atoms and thermally induced 

photons is ( ) 0nα < . Taking the intensity-
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dependent coupling of the form ( )1
c

n + , it is 

shown that the atom-photon entanglement definitely 

occurs for 
1 1

2 2
c

−
< < . This conclusion is verified 

from Figs. 1 and 2 in which the possibly negative 

eigenvalues of ( )PT nρ  versus n  for different c ’s 

and negativity, as a function of the parameter c , all 

for a fixed value of scaled temperature are 

illustrated. Moreover, as the parameter c  increases 

(within the admissible range) the system of atom-

photon becomes more entangled (Figs. (2) and (3)). 

From Fig. (3) it is also noted that the maximal 

entanglement occurs at larger temperatures (lower 

x ) for larger values of c . 
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