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Abstract

A definition of two jointly asymptotically nonexpansive mappings Sand T on uniformly convex Banach space E is
studied to approximate common fixed points of two such mappings through weak and strong convergence of an
Ishikawa type iteration scheme generated by S and T on a bounded closed and convex subset of E. As a
consequence of the notion of two jointly asymptotically nonexpansive maps, we can relax the very commonly
used strong condition “F(S) and F(T) has a nonempty intersection” with the weaker assumption “either F(S) is
nonempty or F(T) is nonempty”. Our convergence results are refinements and generalizations of several recent

results from the current literature.
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1. Introduction

Throughout this paper, N will denote the set of all
positive integers. Let E be area Banach space and
C a nonempty subset of E. A mappings S of C into
itself is said to be asymptotically nonexpansive if
for a  sequence k,<[1, ) with
limk, =1,[S"x — S"y|<k, [x - | holds for all

n—oo
X,yeC and for al n € N. S is caled uniformly
k-Lipschitzian if for some k>0,
|S"X —~ S”y|£kn||x— y| for al x,yeCand

neN.
We define a pair of mappings Sand T of C into
itself as jointly asymptotically nonexpansive if for a

sequence {kn}c[l, o) with limk, =1,

HS”X —T”stkn"x -y 1)

holds for al X, y € C and for dl ne N. Asa
special case, when x = y, we get S= T and so we
get the results for wusual asymptoticaly
nonexpansive mappings. However, for X # Y, (1)

remains of independent interest.
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The class of asymptoticaly nonexpansive
mappings, which is a natural generalization of the
important class of nonexpansive mappings, was
introduced by Goebel and Kirk [1], where it was
shown that, if C is a nonempty bounded closed
convex subset of a uniformly convex Banach space
and T : X — X is asymptotically nonexpansive,
then T has a fixed point. Moreover, the set F(T) is
closed and convex.

A survey of the literature regarding
approximation of common fixed points of two
asymptotically nonexpansive mappings S and T
shows that most of the results deal with the strong
and weak convergence of different iterative
processes to a point in F under the assumption that

F:= F(T) NF(S) #¢. However, for the class
of mappings defined in (1), we note that F #¢ if
either F(T) or F(S) is nonempty. Thus our results
improve several comparable results.

S and T ae caled jointly uniformly k-
Lipschitzian if for some k > 0,

foral X, y € C andforal ne N.

To approximate the common fixed points of two
mappings, the following Ishikawa type two-steps
iterative process is widely used (see, for example,
[2-5] and references cited therein):

S'x—-T"y

[<klx-y] @
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x €C,
X1 = (1 —a)x, +a,J(1-b)x +bTx],

foral ne N, where {a.} and {h,} arein[0, 1]

satisfying certain conditions. Khan and Takahashi
[2] considered it for two asymptoticaly
nonexpansive mappings. Takahashi and Tamura [4]
studied the above scheme for two nonexpansive
mappings. Das and Debata [6] studied the above
scheme for two quasi-nonexpansive mappings.
Recall that Sis asymptotically quasi-nonexpansive
if F(S), the set of fixed points of S is honempty and
S"x—T"y|<k|x - y| or al x,yeC and yeF(S).

In this paper, we take up the problem of
approximation of common fixed points of jointly
asymptotically nonexpansive mappings S and T
through weak and strong convergence of the
sequence defined by:

x €C,
X1 = (1_ an) X, + a'nsn[(l_ bn)xn + bnTan]7

©)

foral ne N,where {a,} and {b,} arein (0,1)

satisfying certain conditions.
Note that when S = T, (3) reduces to modified
Ishikawa iteration scheme:

x €C,

X1 =@ —a)x +aT"[(1-0)x + b T"x],
4)

foral ne N, where {a,} and {b,} arein (0,1)
satisfying certain conditions.
2. Preliminaries

Let E be Banach space and let C be a nonempty
bounded convex subset of E. We need the
following lemmawhich can be foundin[7].

Lemma 1. Suppose that E is a uniformly convex
Banach space and O< p<t,<q<1 foralneN.

Suppose further that {Xn} and {yn} are sequences
of E such that lim,_,_ [x,|<r, lim [y <r
and lim__, [t,x,— @—t)y,[=r hold for

some I >0. Then lim,, ||Xn - yn||: 0.
We recall that a Banach space E is said to satisfy
Opial’s condition [8] if for any sequence {X, } in E,

X, —> X impliesthat

IimSJp,Hoc ||Xn - X||< Ilms"lpn ||yn _X”’

for adl yeE with y#X. Examples of Banach
spaces satisfying this condition are Hilbert spaces
and &l spaces | (1< p<oo). On the other hand,

LP[0,27] with 1< p#£2 fail to satisfy Opid’s
condition.

A mapping T :C— E is called demiclosed
with respect to Y e E if for each sequence {Xn} in
C and exch XeE, X, »>X and TX, >y
imply that XeC and TX =Y.

A Banach space E is said to satisfy the Kadec-
Klee property if for every segquence {)g}in E

converging weakly to x together with ”Xn”

converging strongly to ||X|| implies ||)g1|| converges

strongly to x. Uniformly convex Banach spaces,
Banach spaces of finite dimension and reflexive
locally uniform convex Banach spaces are some
examples of reflexive Banach spaces which satisfy
the Kadec-Klee property.

We shall use the following in our weak
convergence theorem.

Lemma 2. [9] Let C be a nonempty bounded closed
convex subset of a uniformly convex Banach space.
Then there is a strictly increasing and continuous

convex function g:[0,00)—[0,) with g(0) =
0 such that, for L- Lipschitzianmap T : C— C
and for al X, yeC and te[0,]], the following
inequality holds:

[T(tx+@-t)y) — (tTx + A-t) Ty|
<Lg(x-y| - L |T-Ty)).
Lemma 3. Let E be a uniformly convex Banach
space such that its dua E* satisfies the Kadec-

Klee property. Assume that {Xn} is a bounded
seguence such that

lim, Htxn +(-t)p, - pZH exists for all
te[0,] and for al p,, P, ea)w({xn}). Then
@, ({x,}) issingleton.

Lemma 4. [10] Let E be a uniformly convex
Banach space and let C be a nonempty closed
convex subset of E. Let T be an asymptoticaly
nonexpansive mapping of C into itself. Then 1 - T
is demiclosed with respect to zero.
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We now prove a lemma for jointly uniformly k-
Lipschitzian mappings.

Lemma 5. Let E be anormed space and let C be a
nonempty bounded, closed and convex subset of E.
Let, for k > 0, S and T be jointly uniformly k-
Lipschitzian mappings of C into itself. The
lim,Leollx, = S™x,|l =0 implies  lim,,_,ellx, —
T"x,|| = 0 and conversely.

Proof: Since

T"x— S"y|<|x - y] holdsfor all
X,yeC and for al neN, therefore
S, -T "X,

<

n
X,—T"X,

n
X, —S"'X,

+

<

n
X, —S"X,

+k[x, = x|

Hence |im

n—w

MQHX" - T"Xn“ =0 and conversely.
The above lemma enables us to take only one of
the limits Iimen— S”an or Iim“xn— T”an

n—oo n—o

X,— S'%,[ =0 implies that

to be equal to zero to prove the following important
lemma. However, this is not the case for two
individually asymptotically nonexpansive mappings
where we essentially need both of these limits to be
equal to zero.

Lemma 6. Let E be anormed space and let C be a
nonempty bounded, closed and convex subset of E.
Let, for k > 0, S and T be jointly uniformly k-
Lipschitzian mappings of C into itself. Define a

sequence {Xn} asin (3) where {an} and {bn} are
in [0,1-06] for some 6€(0,1). If either
Iimen - S“an: Oor Iimen - T“an =0,

n—o n—oo

then lim|x, — S [=0= L'IQ”X" - Tx, |-

n—o

Proof: Set

G =% =T
and

d, = - S

for adl neN. Also put, for simplicity,

y,=1-b)x +bT"%x,neN, s that (3)
becomes

X = (1=a)x +aS"y,

and

[%ea = %] = &%~ Sy,
< -
<[ =T+ % -5,
<c, + k||x, = v
<c, + kb, ||x, —T”an
<1 +k)c,.
Thus
X = Sl = [Xa = T %] + [T X = S,
<c,,+ k‘xml—T”xn
<Gy K([Xpr = X+ % = S™%,
+ | S% =T, |)
<Copp + K([ Xy — %o+ Hxn —S”xn‘
+K[% = %))
= Cpy + K[(K + 1) X0 — %, [+d,]

<c,,,+K[(k +D?c,+d,].

By Lemma5, limd, = O implies limc, =0,

n—o0 N—o0
therefore
Iimsup| N S(n+l|| <0.
n—oo
Hence
lim||x, — S| < 0.

n—oo
Similarly it can be shown that Iimen - Tan =0.
n—o
With the help of the above lemmas, we also prove
the following lemma needed in the sequel.

Lemma 7. Let E be a normed space and let C be a
nonempty bounded, closed and convex subset of E.
Let, for k >0, S and T be jointly uniformly k-
Lipschitzian mappings of C into itself. Define a

sequence {)qq} asin (3) where {an} and {bn}are
in [5,1—5] for some 6€(0,1). If ether

Iim“xn— sm\\=o or Iimeq—T“an:O,

n—oo n—oo

then !]im||Txn - [ =0.
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Proof: If either IimHXn—S”XnH=O or

n—oo

IimHXn - T”XnH = 0, then by Lemma,

n—oo

lim|x, — x| = 0=lim|x, - Tx,| = 0.

N—o0 n—o

Therefore,

limsup] Sk, —Tx,| < limSk, = x| + lim[Tx, - x|
=0

and solim”S(n - Txn”: 0.

n—oo

3. Weak and Strong Conver gence Theorems

We first prove alemma which, in fact, constitutes a
considerably large part of the proofs of both weak
and strong convergence theorems. It is noted that if
p is a fixed point of one of the mappings Sand T
satisfying (1), then it becomes the common fixed
point of these mappings. Thus in the sequel we will
replace the usual assumption F(S) N F(T) # @ by a
weaker assumption of either F(S) £ @ or F(T)+ @.

Lemma 8. Let E be a uniformly convex Banach
space and let C be its bounded, closed and convex
subset. Let Sand T be two mappings from C into

itself satisfying |S"x— S"y|<k,[x - y| for al
neN, where k <[1. *) such that D (kK —D<oe.

Define a sequence {Xn} inCas

x €C,
Xpq =(1-3,) %, + a,S"[ (1-b,)x, + bT"x, |,

for dl neN where {a,}and {b }ae in
[5,1—5] for some 0 €(0,1). If F(T)+J,

then lim||x, — ;[ = 0 = lim|x, - Tx,.

Proof: Let peF (T) and put y,=@-h)x,+bT"x,

for the sake of simplicity. A straightforward

calculation gives

X1 P =@ a) (x,~p) +2,(S'y,~p)|
<[@-a,) +ak,@-b) +akhb,][x - p-

Setting v =(1-a)+ak(l-Db)+ak’,

the above expression exists for al n € N. By
n+m-1

induction,  [x,,.,— p|| < (I_Ii:1 vi) for all
n,me N. Also, note that Y-, v, < oo, we obtain

rIll_)rrolol_[in\/I =1 and hence LT;IOHX" - p|| exists.

Let rI]im||xn—p|| = c where ¢>0 is a red

number. If ¢ = O, the result is evident. So we
assume ¢ > 0. Now

[T~ p| <k, [x,~ |

foral neN so

Iimsup‘T”xn - p” <c.

Also,

Iva = P =|@-1b,) (%, = p) + b, (T"%, - p)|

< (l_ bn)Hxn_ pH + knanXn - pH
= x,— p|+ (k,— Db, |%, - p]

<%= pll+ (o= 1%, -

gives

limsup|y, - p| <c. (5)
n—oo

Next, [s"y — pHSkn |y, - p| gives by virtue of (5)

and k, »>1asN— oo that”rnTLSOlOJPHS”yn - p|<c

Moreover, C = |im||xn+l - p|| means that
n—oo

lim|(1-a,)(x, - p)+2,(S"y, - p)| = ¢

Applying Lemma 1,

lim|S"y, —x,| =0. (®)
Now

[ = bl <%~ S|+ [S"Ya - 1]

<[ = S"yal+ K Iy, = pl

yields

e <limirt |y, - p]. G

By (5) and (7), we obtain
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) Then it follows that R X =X.. R ..pP=p
limy, —p|=c. ® for al PeF(S)NF(T) and
[RumX=Rm¥| <Ky [x=¥] for al x,ye C where
That is,

lim|(1-b,)(x, - p) +b,(T"y, - p)] = ¢

Again by Lemma 1, we get

lim

n—oo

T"x,—x,[|=0. ©

Lemma 6 combined with (6), (8) and (9) now
revealsthat

imlx, - =0=tim[Tx, x|

n—o

(10)

Lemma 9. Let E be a uniformly convex Banach
space and C its nonempty closed convex subset. Let
ST:C->C be jointly asymptotically

nonexpansive mappings and {X,} as defined in
(3)- Then, p,p,eF(T), limtx,+@-t)p,~p,|
exigsfordl t €[0,]].

Proof: By Lemma 8, |imen+ pH exists for all

peF and so {X} isbounded. Hence we may

assume that C is bounded. Set
2, =[x, + 1=~ p,| s0 that lima,(0)=] p,~p,|

and Iiman(l):Hxn— pH exist. For each ne N ,

defineamapping W, : C — C by

W x=(1-a,)x+a,S"AX
where  AX=(1-Db)Xx+bT"X for all
x €C. Itiseasy to verify that
Wx -W,y | <k? [x-y], V¥xyeC.
Set
R],m =Wn+m—1Wn+m—2"'W ’

n

and

bn,m:‘ Rn,m (txn+(1_t)p1) _tRn,an +(1_t) pl)

vn,meN.

K, =1_[°j°=n k?. Since k, — 1, therefore

K,—>1

Now

By ) =[P @0 P~ P |
SB[ Rum @ +@-) R) - B,)|
=b,+ | R (0 +@-1) P) - R, )|
<b, g, + k[ +@-t) p)-p,)|
<b, . +kal()

Thatis
a,m (1) < b, +ka () (11)

By Lemma 2, there exists a strictly increasing
continuous function g:[0,00) — [0,00) with
g(0) = 0 such that

B <Ky g7 (1% = P) = K IR %, = Ry P )

=K, g7 (%= p) Il = K" 1 %= RO

Combining it with (11), we get

a‘n-;-m (t) Sl‘<n gil(”Xn_ pl) ”_ Kn71 ”Xn+m - pl) ”)

+k,a ().

Since lim||x, — p|| existslim K =1, and
n—o N—0

g '(0) =0, keeping N fixed and letting

M — oo, it follows that
limsupa, (t) < liminf a_ (t) .

n—oo

Hence lim ||(txn + (1-t) p— p2|| exists for
dl t €[0,]].
Theorem 1. Let E be a uniformly convex Banach
space satisfying Opial’s condition and let C, S, T
and {Xn} be as taken in Lenma 8. If F(T) # ¢,

then {Xn} converges weakly to a common fixed
pointof S and T.
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Proof: Let p € F(T). Then Lim”Xn_ p”

exists as proved in Lemma 8. We prove that {Xn}
has a unique weak subsequentia limitinF.

So, let U and V be weak limits of the
subsequences {Xni} and {an} of {Xn}
respectively. By Lemma 8, lim ||Xn—TX|| =0

n—o0

and | — T is demiclosed with respect to zero by
Lemma 4, therefore we obtain Tu = U. Thus
U € F. Again in the same fashion, we can prove

that V € F. Next, we prove the uniqueness. To
thisend, if U and V are ditinct, then by Opid’s
condition,

lim]x, -ul = lim|x, -]
<rl1ii£ro10 X, —VH
=lim[x, -
=lim||x, —v“

n,—oo !
<rl1ii£ro1o X, —uH
=lim| x, —ul.

n—ow

This contradiction compl etes the proof.

Theorem 2. Let E be a uniformly convex Banach
space such that its dual E satisfies the Kadec-Klee

property. Let C, S T and {X } be as taken in

Lemma 8. If F(T)#¢,then {X} converges
weakly to a common fixed point of Sand T.

Proof: By the boundedness of {X.} and reflexivity
of E, we have a subsequence {X,} of {X} that
converges weakly to some p in C. By Lemma8, we

rave  lim|Sx, — x| =0=1im|Tx, -x|.
This gives pe F. To prove that {X.} converges
weakly to some p, suppose that {X, } is another
subsequence of { X} in C that converges weakly to
some g in C. Then by Lemmas 8 and 4,
pP,geWNF whee W=q,({X}).Since

Iim||txn+(1—t)p—q|| exists for al te[0,1]

by Lemma 9, P =( by Lemma 3. Consequently,
{x.} convergesweaklyto pe F.

By putting S=T in the above two theorems, we
have the following corollaries.

Corollary 1. Let E be a uniformly convex Banach
space satisfying the Opial’s condition and C, T be

as taken in Lemma 8 and {X} as in (4). If

F(T)#¢, then {X }converges weakly to a

common fixed point of T.

We now turn to strong convergence theorems.
Our first result is in this direction, in a general rea
Banach space and goes as follows:

Theorem 3. Let E be a real Banach space and
CA{x,},ST be as taken in Lemma 8. If

F(T)=¢, then {X} converges strongly to a

common fixed point of T if and only if
liminf d(x,,F) =0 where d(x F) =inf{|x—p|: peF}.

Proof: Necessity is above. Conversely, suppose
that liminf d(x,,F)=0. As proved in Lemma
n—o

8, we have

X2 = Pl < ks %, = |-
Thisgives

d(X,,..F) <kd(x,,F),
So that Lmd(x"F) exists. But by hypothesis
Iinm_igf d(x,,F), therefore we must have
,!Lnld(xn’F) =0.

Next we show that {Xn} is a Cauchy sequencein

C. Let &£>0 be given. Since Lmd(Xn,F) =0,

there exists N, in N such that for all n=>n,, we
have

d(x F)<Z.
(X, )<4

In particular, inf {Hxno - pH: pe F} < % There

g
< —.

must exist p° € F such that -p
P [, — o<

Now for N, m=n,we have
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In X,..— P +|x,— P

n+m

—xn||s‘

*|

<2|x,—- P’

)

Hence {Xn} is a Cauchy sequence in a closed

subset C of a Banach space E, therefore it must
converge in C. Let limx =0 Now

n—oo

limd(x,,F) =0 givesthat d(x,F) =0.1Itis

well-known that F isclosed and so e F.

We now modify the so-called Condition (A")
given by Fukhar-ud-din and Khan [11] and call it
Condition (A") asfollows:

Two mappings S, T:C ->C are sad to
satisfy Condition (A’) if there exists a
nondecreasing function f:(0, o] — [0, o) with
f(0) =0, f(r)>0 foral re(0, «) such
that ||Sk—Tx|> f (d(x,F)) foral x eC.

Note that Condition (A") reduces to Condition
(A") when oneof Sand T isidentity mapping.

Our next theorem is an application of Theorem 3
and makes use of the Condition (A") .

Theorem 4. Let E be a uniformly convex Banach
space and C, {x,} be as taken in Lemma 8. Let

SST:C->C be jointly
nonexpansive mappings satisfying Condition (A") .
If F(T)#¢, then {Xn} converges strongly to a
common fixed point of Sand T.

asymptotically

Proof: By Lemma 8, IimHXn - XH exigts for all
n—o0

X" eF. Letitbec for some ¢>0. If ¢ =0, there
is nothing to prove. Suppose ¢ > 0. Now
[0 X<k, [, - x| Givesthat dx, ., F)<k d(x,F)

and so Iim\Sg—Tan = 0. exists. Moreover, by

Lemma,
Using condition (A")

lim|Sx, - Tx,| = 0.

lim f(d(x,.F)) > Lim||S<n - Tx,| = 0.
That is,

lim £ (d(x,,F)) =0

Since f is anondecreasing function and f(0) = 0,
lim f (d(x,,F))=0. Now Theorem 3 gives
n—o

the result.

Corollary 3. Let C be a nonempty bounded closed
convex subset of a uniformly convex Banach space
E. Let S,T:C—C satisfying condition (A')
and

HS”X - S”y”skn Ix=y].
‘TI’ "X —T ”y”s k, [x =y

for dl neN, where {k,}c[1,o) such that
Z::l(kn —1) <oo. Construct an iterative process

{x,} asin (3) with 0<1-5 <a,,b,<5<1 for

dl neN. If F=F(S)NF(T)# ¢ then {Xn}

converges strongly to a common fixed point of S
and T.

Remark: Theorems 1-4 set analogues of the
corresponding results in [12] and [13] for two
jointly asymptotically nonexpansive mappings on a
bounded domain.

Open Question: Can Theorems 1-4 be proved on
an unbounded domain in a uniformly convex
Banach space E?
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