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Abstract 

A definition of two jointly asymptotically nonexpansive mappings S and T on uniformly convex Banach space E is 
studied to approximate common fixed points of two such mappings through weak and strong convergence of an 
Ishikawa type iteration scheme generated by S and T on a bounded closed and convex subset of E. As a 
consequence of the notion of two jointly asymptotically nonexpansive maps, we can relax the very commonly 
used strong condition “F(S) and F(T) has a nonempty intersection” with the weaker assumption “either F(S) is 
nonempty or F(T) is nonempty”. Our convergence results are refinements and generalizations of several recent 
results from the current literature. 
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1. Introduction 

Throughout this paper, N will denote the set of all 
positive integers. Let E be a real Banach space and 
C a nonempty subset of E. A mappings S of C into 
itself is said to be asymptotically nonexpansive if 
for a sequence  1 ,nk    with 

lim 1, n n
n n

n
k S x S y k x y


     holds for all 

,x y C  and for all ݊ א ܰ. ܵ is called uniformly 

k-Lipschitzian if for some 0,k   
n n

nS x S y k x y    for all ,x y C and 

݊ א ܰ. 
We define a pair of mappings S and T of C into 

itself as jointly asymptotically nonexpansive if for a 

sequence    1 ,nk    with lim 1,n
n

k


  

 
n n

nS x T y k x y                           (1) 

 
holds for all ,x y C  and for all .n N  As a 

special case, when x = y, we get S = T and so we 
get the results for usual asymptotically 
nonexpansive mappings. However, for ,x y  (1) 

remains of independent interest.  
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The class of asymptotically nonexpansive 
mappings, which is a natural generalization of the 
important class of nonexpansive mappings, was 
introduced by Goebel and Kirk [1], where it was 
shown that, if C is a nonempty bounded closed 
convex subset of a uniformly convex Banach space 
and :T X X  is asymptotically nonexpansive, 

then T has a fixed point. Moreover, the set F(T) is 
closed and convex. 

A survey of the literature regarding 
approximation of common fixed points of two 
asymptotically nonexpansive mappings S and T 
shows that most of the results deal with the strong 
and weak convergence of different iterative 
processes to a point in F under the assumption that 

: ( ) ( ) .F F T F S    However, for the class 

of mappings defined in (1), we note that F   if 

either F(T) or F(S) is nonempty. Thus our results 
improve several comparable results.  

S and T are called jointly uniformly k- 
Lipschitzian if for some ݇ ൐ 0, 
 

n nS x T y k x y                                     (2) 

 
for all ,x y C  and for all .n N  

To approximate the common fixed points of two 
mappings, the following Ishikawa type two-steps 
iterative process is widely used (see, for example, 
[2-5] and references cited therein): 
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1

1

,

(1 ) [(1 ) ],n n n n n n n n

x C

x a x a S b x b Tx


    

 

 
for all ,n N  where { }na  and { }nb  are in [0, 1] 

satisfying certain conditions. Khan and Takahashi 
[2] considered it for two asymptotically 
nonexpansive mappings. Takahashi and Tamura [4] 
studied the above scheme for two nonexpansive 
mappings. Das and Debata [6] studied the above 
scheme for two quasi-nonexpansive mappings. 
Recall that S is asymptotically quasi-nonexpansive 
if F(S), the set of fixed points of S, is nonempty and 

n nS x T y k x y    or all , and ( ).x y C y F S   

In this paper, we take up the problem of 
approximation of common fixed points of jointly 
asymptotically nonexpansive mappings S and T 
through weak and strong convergence of the 
sequence defined by: 
 

1

1

,

(1 ) [(1 ) ],n n
n n n n n n n n

x C

x a x a S b x b T x



    
 (3) 

 
for all ,n N where { }na  and { }nb  are in (0,1)  

satisfying certain conditions.  
Note that when S = T, (3) reduces to modified 

Ishikawa iteration scheme: 
 

1

1

,

(1 ) [(1 ) ],n n
n n n n n n n n

x C

x a x a T b x b T x



    
    

(4) 
 
for all ,n N  where { }na  and { }nb  are in (0,1)
satisfying certain conditions. 

2. Preliminaries 

Let E be Banach space and let C be a nonempty 
bounded convex subset of E. We need the 
following lemma which can be found in [7]. 
 
Lemma 1. Suppose that E is a uniformly convex 

Banach space and 0 1np t q     for all ݊ א ܰ. 

Suppose further that  nx and  ny are sequences 

of E such that limn nx r  , limn ny r   

and lim (1 )n n n n nt x t y r     hold for 

some 0.r   Then lim 0.n n nx y    
We recall that a Banach space E is said to satisfy 

Opial’s condition [8] if for any sequence  nx in E, 

nx x  implies that  

limsup limsup ,n n n nx x y x     

for all y E  with .y x  Examples of Banach 

spaces satisfying this condition are Hilbert spaces 

and all spaces (1 ).pl p   On the other hand, 

[0, 2 ]pL   with 1< 2p  fail to satisfy Opial’s 

condition. 
A mapping :T C E  is called demiclosed 

with respect to y E  if for each sequence  nx in 

C and each ,x E nx x  and nT x y  

imply that x C  and .Tx y   

A Banach space E is said to satisfy the Kadec-

Klee property if for every sequence  nx in E 

converging weakly to x together with nx  

converging strongly to x  implies nx  converges 

strongly to x. Uniformly convex Banach spaces, 
Banach spaces of finite dimension and reflexive 
locally uniform convex Banach spaces are some 
examples of reflexive Banach spaces which satisfy 
the Kadec-Klee property. 

We shall use the following in our weak 
convergence theorem. 
 
Lemma 2. [9] Let C be a nonempty bounded closed 
convex subset of a uniformly convex Banach space. 
Then there is a strictly increasing and continuous 
convex function :[0 , ) [0 , )g    with g(0) = 

0 such that, for L- Lipschitzian map :T C C  

and for all ,x y C  and [0,1],t  the following 

inequality holds: 
 

1 1

( (1 ) ) ( (1 )

( ).

T tx t y tTx t Ty

Lg x y L Tx Ty 

    

   
 

 
Lemma 3. Let E be a uniformly convex Banach 

space such that its dual E  satisfies the Kadec-

Klee property. Assume that  nx is a bounded 

sequence such that 

21lim ( )n ntx q t p p     exists for all 

[0,1]t  and for all  1 2, ( ).w np p x  Then 

 ( )w nx  is singleton. 

 
Lemma 4. [10] Let E be a uniformly convex 
Banach space and let C be a nonempty closed 
convex subset of E. Let T be an asymptotically 
nonexpansive mapping of C into itself. Then 1 – T 
is demiclosed with respect to zero. 
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We now prove a lemma for jointly uniformly k- 
Lipschitzian mappings. 
 
Lemma 5. Let E be a normed space and let C be a 
nonempty bounded, closed and convex subset of E. 
Let, for k > 0, S and T be jointly uniformly k- 
Lipschitzian mappings of C into itself. The 
lim௡՜ஶ‖ݔ௡ െ ܵ௡ݔ௡‖ ൌ 0 implies lim௡՜ஶ‖ݔ௡ െ
ܶ௡ݔ௡‖ ൌ 0 and conversely. 
 

Proof: Since n nT x S y x y    holds for all 

,x y C  and for all n N , therefore 

.

    

   

n n n n
n n n n n n

n
n n n n

x T x x S x S x T x

x S x k x x

Hence lim 0n
n n

n
x S x


   implies that 

lim 0n
n n

n
x T x


   and conversely. 

The above lemma enables us to take only one of 

the limits lim n
n n

n
x S x


  or lim n

n n
n

x T x


  

to be equal to zero to prove the following important 
lemma. However, this is not the case for two 
individually asymptotically nonexpansive mappings 
where we essentially need both of these limits to be 
equal to zero. 
 
Lemma 6. Let E be a normed space and let C be a 
nonempty bounded, closed and convex subset of E. 
Let, for k > 0, S and T be jointly uniformly k- 
Lipschitzian mappings of C into itself. Define a 

sequence  nx  as in (3) where  na  and  nb  are 

in [ ,1 ]   for some (0,1).  If either 

lim 0 or lim 0,n n
n n n n

n n
x S x x T x

 
     

then lim 0 lim .n n n n
n n

x Sx x Tx
 

     

 
Proof: Set  

n
n n nc x T x   

and  
n

n n nd x S x   

for all n N . Also put, for simplicity, 

(1 ) , ,n
n n n n ny b x b T x n N     so that (3) 

becomes  
 

1 (1 ) n
n n n n nx a x a S y     

 
and 
 

1
n

n n n n nx x a x S y     

(1 ) .

n
n n

n n n
n n n n

n n n

n
n n n n

n

x S x

x T x T x S y

c k x y

c kb x T x

k c

 

   

  

  

 

 

 
Thus 
 

1 1
1 1 1 1 1 1

1 1

1 1

1

1 1

1

1 1

2
1

(

)

(

)

[( 1) ]

[( 1) ].

n n
n n n n n n

n
n n n

n
n n n n n

n n
n n

n
n n n n n

n n

n n n n

n n n

x Sx x T x T x Sx

c k x T x

c k x x x S x

S x T x

c k x x x S x

k x x

c k k x x d

c k k c d

 
     

 

 



 



 



    

  

    

 

    

 

    

   
 

By Lemma 5, lim 0n
n

d


  implies lim 0n
n

c


 , 

therefore 
 

1 1limsup 0.n n
n

x Sx 


   

 
Hence 

 lim 0.n n
n

x Sx


   

 
Similarly it can be shown that lim 0.n n

n
x Tx


   

With the help of the above lemmas, we also prove 
the following lemma needed in the sequel. 
 
Lemma 7. Let E be a normed space and let C be a 
nonempty bounded, closed and convex subset of E. 
Let, for k >0, S and T be jointly uniformly k- 
Lipschitzian mappings of C into itself. Define a 

sequence  nx  as in (3) where  na  and  nb are 

in  ,1   for some (0,1).  If either 

lim 0n
n n

n
x S x


   or lim 0n

n n
n

x T x


  , 

then lim 0.n n
n

Tx Sx


   
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Proof: If either lim 0n
n n

n
x S x


   or 

lim 0n
n n

n
x T x


  , then by Lemma 6, 

lim 0n n
n

x Sx


  = lim 0.n n
n

x Tx


 

Therefore,  
limsup lim limn n n n n n

n nn
Sx Tx Sx x Tx x

 
      

=0 

and so lim 0.n n
n

Sx Tx


   

3. Weak and Strong Convergence Theorems 

We first prove a lemma which, in fact, constitutes a 
considerably large part of the proofs of both weak 
and strong convergence theorems. It is noted that if 
p is a fixed point of one of the mappings S and T 
satisfying (1), then it becomes the common fixed 
point of these mappings. Thus in the sequel we will 
replace the usual assumption ܨሺܵሻ ת ሺܶሻܨ ്  by a ׎
weaker assumption of either ( ) or ( ) .F S F T     

 
Lemma 8. Let E be a uniformly convex Banach 
space and let C be its bounded, closed and convex 
subset. Let S and T be two mappings from C into 
itself satisfying n n

nS x S y k x y    for all 

,n N  where  1 ,nk    such that 1
( 1) .nn
k




   

Define a sequence  nx in C as: 

 1

1

,

(1 ) (1 ) ,n n
n n n n n n n n

x C

x a x a S b x b T x



      
 

 

for all n N  where  na and  nb are in 

 ,1   for some (0,1).   If ( )F T  , 

then lim 0 lim .n n n n
n n

x Sx x Tx
 

     

 
Proof: Let ( )p F T  and put (1 ) n

n n n n ny b x b T x    

for the sake of simplicity. A straightforward 
calculation gives 
 

1

2

(1 ) ( ) ( )

(1 ) (1 ) .

n
n n n n n

n n n n n n n n

x p a x p a S y p

a a k b a k b x p

      

       

 

 
Setting 2(1 ) (1 ) ,n n n n n n n nv a a k b a k b      

the above expression exists for all ݊ א ܰ. By 

induction,  1

1

n m

n m ii
x p v

 
 
    for all 

, .n m N  Also, note that ∑ 	௡ݒ ൏ ∞ஶ
௡ୀଵ , we obtain 

lim 1ii nn
v




  and hence lim n

n
x p


  exists. 

Let lim n
n

x p


  = c where 0c   is a real 

number. If c = 0, the result is evident. So we 
assume c > 0 . Now  
 

n
n n nT x p k x p    

 
for all 	n N  so 
 

limsup .n
n

n
T x p c


   

 
Also, 
 

(1 ) ( ) ( )

(1 )

( 1)

( 1)

n
n n n n n

n n n n n

n n n n

n n n

y p b x p b T x p

b x p k b x p

x p k b x p

x p k x p

     

    

    

    
 
gives 
 

limsup .n
n

y p c


                                          (5) 

 
Next, n

n n nS y p k y p    gives by virtue of (5) 

and 1nk   as n   that limsup .n
n

n
S y p c


   

Moreover, 1lim n
n

c x p
   means that  

 

lim (1 )( ) ( ) .n
n n n n

n
a x p a S y p c


      

 
Applying Lemma 1,  

 

lim 0.n
n n

n
S y x


                                          (6) 

 
Now 

 
n n

n n n nx p x S y S y p      

 
n

n n n nx S y k y p     

 
yields  

 

lim inf .n
n

c y p


                                           (7) 

 
By (5) and (7), we obtain 
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lim .n
n

y p c


                                                 (8) 

 
That is,  

 

lim (1 )( ) ( ) .n
n n n n

n
b x p b T y p c


      

 
Again by Lemma 1, we get  

 

lim 0.n
n n

n
T x x


                                         (9) 

 
Lemma 6 combined with (6), (8) and (9) now 

reveals that   

 

lim 0 lim .n n n n
n n

S x x T x x
 

             

(10) 
 
Lemma 9. Let E be a uniformly convex Banach 
space and C its nonempty closed convex subset. Let 

, :S T C C  be jointly asymptotically 

nonexpansive mappings and { }nx  as defined in 

(3). Then, 
1 2, ( ),p p F T  

1 2lim (1 )n
n

t x t p p


    

exists for all [0,1].t  

 
Proof: By Lemma 8, lim n

n
x p


  exists for all 

p F  and so { }nx  is bounded. Hence we may 

assume that C is bounded. Set 
1 2( ) (1 )n na t t x t p p     so that 1 2lim (0)n

n
a p p


   

and lim (1)n n
n

a x p


   exist. For each n N ,  

define a mapping :nW C C  by  
 

(1 ) ,n
n n n nW x a x a S A x    

 

where (1 ) ,n
n n nA x b x b T x   for all 

.x C  It is easy to verify that  
 

2 , , .n n nW x W y k x y x y C      
 
Set  
 

, 1 2... ,n m n m n m nR W W W     
 
and  
 

, , 1 , 1( (1 ) ) (1 ) ) ,

, .

n m n m n n m nb R tx t p tR x t p

n m N

     

 
 

Then it follows that , , ,n m n n m n mR x x R p p   

for all ( ) ( )p F S F T   and 

, ,n m n m nR x R y K x y    for all ,x y C  where 

2
n jj n

K k



 . Since 1,nk  therefore 

1.nK   

Now 
 

1 2( ) (1 )n m n ma t tx t p p      

, , 1 2( (1 ) ) )n m n m nb R tx t p p      

, , 1 , 2( (1 ) ) )n m n m n n mb R tx t p R p      

, 1 2( (1 ) ) )n m n nb k tx t p p      

, ( )n m n nb k a t   
 
That is  
 

,( ) ( ).n m n m n na t b k a t                            (11) 
 

By Lemma 2, there exists a strictly increasing 
continuous function :[0, ) [0, )g     with 

(0) 0g   such that  
 

1 1
, 1 , , 1( || ) || || ) ||)n m n n n n m n n mb K g x p K R x R p    

1 1
1 1(|| ) || || ) ||)n n n n mK g x p K x p 

    . 
 
Combining it with (11), we get 
 

1 1
1 1( ) (|| ) || || ) ||)

( ).
n m n n n n m

n n

a t K g x p K x p

k a t

 
    


 

Since lim || ||n
n

x p


  exists lim 1,n
n

K


  and 

1 (0) 0,g    keeping n  fixed and letting 

m  , it follows that  

limsup ( ) liminf ( )n n
nn

a t a t


 . 

Hence 1 2lim ( (1 )n
n

tx t p p


    exists for 

all [0,1].t   

 
Theorem 1. Let E  be a uniformly convex Banach 
space satisfying Opial’s condition and let , ,C S T  

and  nx be as taken in Lemma 8. If ( ) ,F T   

then  nx  converges weakly to a common fixed 

point of S  and .T  
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Proof: Let ( ).p F T  Then lim n
n

x p


  

exists as proved in Lemma 8. We prove that  nx  

has a unique weak subsequential limit in F.  
So, let u  and v  be weak limits of the 

subsequences  
inx  and  jnx  of  nx , 

respectively. By Lemma 8, lim 0n
n

x Tx


   

and I T  is demiclosed with respect to zero by 

Lemma 4, therefore we obtain .Tu u  Thus 

.u F  Again in the same fashion, we can prove 

that .v F  Next, we prove the uniqueness. To 

this end, if u  and v  are distinct, then by Opial’s 

condition,  
 

lim lim
i

i
n n

n n
x u x u

 
    

                       
lim

i
i

n
n

x v


   

                       
lim n

n
x v


   

                       
lim

i
i

n
n

x v


   

                       
lim

i
i

n
n

x u


   

                      
lim .n
n

x u


   

 
This contradiction completes the proof. 
 
Theorem 2. Let E be a uniformly convex Banach 
space such that its dual E* satisfies the Kadec-Klee 

property. Let C, S, T and { }nx  be as taken in 

Lemma 8. If ( ) ,F T  then { }nx  converges 

weakly to a common fixed point of S and T. 
 

Proof: By the boundedness of { }nx  and reflexivity 

of E, we have a subsequence { }
inx  of { }nx  that 

converges weakly to some p in C. By Lemma 8, we 

have lim 0 lim .
i i i in n n n

i i
S x x T x x

 
     

This gives .p F  To prove that { }nx  converges 

weakly to some p, suppose that { }
knx  is another 

subsequence of { }nx  in C that converges weakly to 

some q in C. Then by Lemmas 8 and 4, 

,p q W F   where ({ }).W nW x Since 

lim (1 )n
n

tx t p q


    exists for all [0,1]t  

by Lemma 9, p q  by Lemma 3. Consequently, 

{ }nx  converges weakly to .p F   

By putting S T in the above two theorems, we 
have the following corollaries. 
 
Corollary 1. Let E be a uniformly convex Banach 
space satisfying the Opial’s condition and C, T  be 

as taken in Lemma 8 and { }nx  as in (4). If 

( ) ,F T   then { }nx converges weakly to a 

common fixed point of T. 
We now turn to strong convergence theorems. 

Our first result is in this direction, in a general real 
Banach space and goes as follows: 
 
Theorem 3. Let E be a real Banach space and 

,{ }, ,nC x S T  be as taken in Lemma 8. If 

( ) ,F T   then { }nx  converges strongly to a 

common fixed point of ܶ if and only if 
lim inf ( , ) 0nn

d x F


  where ( , ) inf{ : }.d x F x p p F    

 
Proof: Necessity is above. Conversely, suppose 
that lim inf ( , ) 0nn

d x F


 . As proved in Lemma 

8, we have 
 

1 .n n nx p k x p     
 
This gives	 
 

1( , ) ( , ),n n nd x F k d x F   
 
So that 

n
lim ( , )nd x F


 exists. But by hypothesis

n
liminf ( , )nd x F


, therefore we must have 

n
lim ( , ) 0.nd x F


  

Next we show that  nx is a Cauchy sequence in 

C. Let 0   be given. Since 
n
lim ( , ) 0nd x F


 , 

there exists 0n  in N such that for all 0 ,n n  we 

have  
 

( , ) .
4nd x F


  

 

In particular,  0
: .

4ninf x p p F


    There 

must exist p F   such that 
0

.
4nx p
   

Now for 0,n m n we have  
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2

2 .
4

n+m n n m n

n

n x x P x P

x P

 

 




    

 

   
 

 

 

Hence  nx is a Cauchy sequence in a closed 

subset C of a Banach space E, therefore it must 

converge in C. Let 
n
lim .nx q


  Now 

n
lim ( , ) 0nd x F


  gives that ( , ) 0d x F  . It is 

well-known that F is closed and so .q F  

We now modify the so-called Condition ( )A  

given by Fukhar-ud-din and Khan [11] and call it 

Condition ( )A  as follows: 

Two mappings , :S T C C  are said to 

satisfy Condition ( )A  if there exists a 

nondecreasing function    : 0, 0 ,f    with 

(0) 0, ( ) 0f f r   for all (0 , )r   such 

that  ( , )Sx Tx f d x F   for all .x C   

Note that Condition (A*) reduces to Condition 
( )A  when one of S and T is identity mapping. 

Our next theorem is an application of Theorem 3 

and makes use of the Condition ( )A . 

 
Theorem 4. Let E be a uniformly convex Banach 
space and  , nC x  be as taken in Lemma 8. Let 

, :S T C C  be jointly asymptotically 

nonexpansive mappings satisfying Condition ( )A . 

If ( ) ,F T   then  nx  converges strongly to a 

common fixed point of S and T. 
 

Proof: By Lemma 8, lim n
n

x x


  exists for all 

.x F   Let it be ܿ for some 0.c  If c = 0, there 

is nothing to prove. Suppose c > 0. Now 

1n n nx x k x x 
     gives that 

1( , ) ( . )n n nd x F k d x F   

and so lim 0.n n
n

Sx Tx


   exists. Moreover, by 

Lemma 7,  

Using condition ( )A  
 

 

lim 0.

lim ( , ) lim 0.

n n
n

n n n
n n

Sx Tx

f d x F Sx Tx



 

 

  
 

 
That is, 
 

 lim ( , ) 0n
n

f d x F


  

 
Since f  is a nondecreasing function and f(0) = 0, 

 lim ( , ) 0n
n

f d x F


 . Now Theorem 3 gives 

the result. 
 
Corollary 3. Let ܥ be a nonempty bounded closed 
convex subset of a uniformly convex Banach space 
, Let .ܧ :S T C C  satisfying condition ( )A  

and  
 

,n n
n

n n
n

S x S y k x y

T x T y k x y

  

  
 

 
for all ݊ א ܰ, where ሼ݇௡ሽ ؿ ሾ1,∞ሻ such that 

1
( 1) .nn
k




   Construct an iterative process 

 nx  as in (3) with 0 1 , 1n na b       for 

all .n N  If ܨ ൌ ሺܵሻܨ ת ሺܶሻܨ ് then   ׎ nx  

converges strongly to a common fixed point of S 
and T. 

 
Remark: Theorems 1-4 set analogues of the 
corresponding results in [12] and [13] for two 
jointly asymptotically nonexpansive mappings on a 
bounded domain. 
 
Open Question: Can Theorems 1-4 be proved on 
an unbounded domain in a uniformly convex 
Banach space E? 
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