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Abstract

In this paper, the Matsumoto metric with special Ricci tensor has been investigated. It is proved that, if & is of
positive (negative) sectional curvature and F is of ¢ -parallel Ricci curvature with constant killing 1-form ,6' ,
then (M, F) isaRiemannian Einstein space. In fact, we generalize the Riemannian result established by Akbar-

Zadeh.
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1. Introduction

One of the most important problems in Finser
geometry is to understand the geometric meanings of
various quantities and their impacts on the global
geometric structures. The flag curvature K, which is
obtained by the Riemannian curvature, tells us how
curved the Finder manifold is at a specific point.
Moreover, there are severa important non-
Riemannian quantities in Finder geometry: the Cartan
torsion C, the Berwald curvature B, the Landsberg
curvature L, and the well-known S curvature, etc.
They al vanish for Riemannian metrics, hence they
are said to be non-Riemannian. These quantities
interact with the flag curvature in afragile way.

(a, B) -Metrics were introduced in 1972 by
M.Matsumoto [1]. The study of Finder spaces with
(a, B) -metricsiis quite old, but it is a very important
aspect of Finsler geometry and its applications (see [2-
5)). An («, ) -metric is a scalar function on TM
defined by F =Ly, S=pla where

(24
® =®d(s) isa c~”on (by,by)with certain

regularity, o = \/a; (X)y'y' isaRiemannian metric

and ﬁ;:bl(x)y‘ is a 1-form in the manifold M.
Therefore, (M,a) is caled the associated

Riemannian manifold. A Finder space is a manifold
M equipped with a family of smoothly varying
Minkowsky norms, one on each tangent space,
Riemannian metrics are examples of Finder norms
that are induced from an inner-product.
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Some especially interesting examples of («, /) -
metrics are the Randers metric, Matsumoto metric
and Berwald metric, £ _ (2+8)° . Randers metric

(04

and its Ricci tensor are related via their history in
physics. The well-known Ricci tensor was
introduced in 1904 by G. Ricci. Nine years later
Ricci’s work was used to formulate Einstein's
theory of gravitation. Einstein metrics are defined
in the next section but, loosely, we will say a
Findler metric F is Einstein if the average of its flag
curvatures at a flag pole Y is afunction of position
Xalone, rather than the a priori position X and flag
poley. C. Robles investigated Randers Einstein
metrics in her thesis in 2003. She obtained the
necessary and sufficient conditions for Randers
metric to be Einstein and by using Einstein Zermelo
navigation description, she proved the pair (h,W)
of a Riemannian metric and an appropriate vector
field W has been founded in [6].

Put H; =Hi, ; denote the canonical section of the
vector bundle 7* TM and the vertical derivation
with respect to ' by Vand i, respectively. For
an (a,p)-metric F=®(B/a)a, by using the

geodesic coefficient of & , we can introduce a new
geometric quantity. Let us denote the Levi-Civita

connection of & by V . We define the Ricci tensor
H and H on 7* TM asfollows:
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Hj =; ) 8. H(v,v)

HXY )=V HXY), XY ex(TM,),
X=m(X), Y=mn),

where, V isthe geodesic spray associated with .
The curvature H is closely related to the Ricci
curvature and its related to (a,f3)-metrics,
especialy to the associated Riemannian manifold
(M, ). In this paper we investigate an (o, f) -
metric of ¢ -parallel Ricci curvature, and we prove
the following theorem:

2
Theorem 11. Let F—_%  be a Matsumoto
a-p
metric on a connected manifold M of dimension N.
Suppose that « is of positive (negative) sectional
curvatureand H =0, (H(v,v)#0) and S isa
constant killing 1-form. Then, (M,F) is a

Riemannian Einstein space.
In fact, we generalize the Riemannian result
established by Akbar-Zadeh in [7].

2. Preliminaries

Lee M be an n -dimensional C” manifold.
Denote by Tl M the tangent space at X € M , and

by TM =u,_ T,M the tangent bundle of M.

Each element of TM has the form (X, Y), where
xeMand yeT M. Let TM,=TM \{0}.
The natural projection 7:TM — M is given by
(X, Y)=X. The pull-back tangent bundle
7*TM is a vector bundie over TM, whose

fiber 7, TM a veTM, is jus T M
where7(V) = X. Then

7*TM ={(X,y,V)\yeT M,,veT M}.
A Finder metric on a manifold M is a function
F:TM —[0,0)which has the following
properties:

(i) F isC%onTM,;

(i) F(X,Ay)=AF(X,y) A>0;

(iii) For any tangent vector Y € T, M, the vertical

F2
Hessian of 7 given by

1,
gj (X1y):[§F ]

y'y!

is positive definite.

Every Finder metric F induding a spray
0

G=y ——ZG (%, y) is defined by

G (x.y) = g"(x W2k g“

g]k

(X,y)

Y)YV,

where the matrix (g") means the inverse of

matrix (g; ), and the coefficients G, Gj.and

hv-curvature G;m of the Berwald connection can

be derived from the spray G' as follows:

: i . 0G; . oG

G| =£’ Gy=—7sr Gu= -
oy oy

When F:,/aﬂ.(x)yiyj is a Riemannian

metric, K, = R;m (X)Y'y'  where Rig L (X)

denote the coefficients of the usua Riemannian
curvature tensor. Thus, the Ricci scalar function of
Fisgiven by

1
.:—K'

P E2
Therefore, the Ricci scalar function is positive
homogeneous of degree O inYy. This means

H(v,v) =K.

(X, y) depends on the direction of the flag pole
Y, but not its length.

1. .
H; =§8iajH(v,v).

A Finsler manifold (M, F) iscalled an Einstein
space if there exists a differentiable function c
defined on M such that H (V,V) = ¢F *. The Ricci
identity for a tensor W, of 7*TM is given by
the following formula:
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DkDIij -D, Dijm =-W,.H jrkl

oW
W H, -
J ay

jm r
mkl r H okl !

where, D, denotes the horizontal covariant

o
derivative whit respect to {F} in the Berwald
X

connection. Let (M,F) be an nNn-dimensiona
Finder space. For every Xe M, assume
SM={yeTM\F(x,y)=1. SM s called
the indicatrix of F at Xe M and is a compact
hyper surface of T M, for every XM . Let
v:iSM >TM be its canonical embedding;
where |v| =1 and (t,U) be acoordinate system on
SM. Then, SM is represented localy by

V=V (t*), ao=12..(n-1). One can eadiy
show that:

0 0

EYAY
The (N—1) vectors {(V,)} from a basis for the
tangent space of S M in each point, where

VL:;V;, a=12,..,(n-1). For the sake of

simplicity, put g = i It can be easily shown
“ae
that

0, =FV, i

oy

g= 0, (X y)dy'dy’ is a Riemannian metric
on T.M . Inducing g in S,M , one gets the
Riemannian metric = §,,dt“dt”, where
0.4 ZVLViﬂgij.The canonical  unit  vertical
vector fidd V(X y) =Y % together  the

(n—1) vectors 0, from the loca basis for
TM, B={u",u?,..u"} whee U“=(V)
and U" =V . We conclude that g(V,0,)=0

thatis y,V. =0.
Let (M, F) be an n-dimensional Finder space
equipped with an (&, 3) -metric F, where

a(x,y)=4a,(xy'y’, Bxy)=b((xy,

M. Matsumoto [2] showed that G' of (&, /3)-
metric space are given by
2G' =y} +28',
where
B'=(E/ o)y +(aF, /F,)s,
—(aF,, /F)C{(Y' /a)—(a/B)b,

E=(BF, /FC, C=ap(ryF,
~2as,F,) / 2(B°F, + oy°F,,),
bi :airbr’ b2:brbr’ 7/2:b2a2_ﬂ2,

1 ~
=S b)

j "

i ::%(%jQ"‘%ib.)’ S

i . Aih . i
s;=a"s,, s =hbs.

The marix (@”) means the inverse of
matrix (2" ). The function }/;k stands for the

Christoffel symbols in the space (M, ) , and the

suffix O means transacting length with respect toox
equivalently

=0, and s =0.
In an n-dimensional coordinate neighborhood U,

we consider a liner partial differential equation of
second order,

x 0’ . 0p
L(p) =g — +h' ==
()=9 OX' X" OX’

where g™(X) and h'(X) ae continuous
function of point X in U, and quadratic form
gijjZk is supposed to be positive definite

everywhere in U. Then we cal L an dliptic
differential operator.

Strong Maximum principle: In coordinate
neighborhood U, if a function @(P) of class C?
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satisfies
L(p)20

where p: M — R", and if there exists a fixed point
P, in U such that ¢(p)<ep(p,), V,eU,

then we have p(p)=¢p(p,). V peU. If @
have absolute maximum in U, then @ is constant
onU.

3. Proof of Theorem 1.1

In this section, we consider the («,f5)-metrics
where o is of positive (negative) sectional
5 -

X
locally horizonta basis of TTMg with respect to F

and & , respectively. To prove the theorem 1.1, we
need the following:

curvature. Let {—} and {Ai.} be the natural
oX

Proposition 3.1. Let F =<D(£)a be an (a,f)-
a

metric on a connected manifold M. Suppose that &
is of positive (negative) sectional curvature. Then,

we have H(V,v)=cCa ,ce R, if and only if
H=0.

Proof: Denote the Riemann curvature of « by
ﬁ;kl and 6’?/' denote 5i for the sake of
simplicity. By wusing the Ricci identity for

H. ==0.0 H(v,v), with respect to 6 one
ij 2 iYj

obtains:
6kﬁlnij _6I6kﬁij =-H i R irkl

OB SO BT 1
_Hir ikl _arHinokI ( )

g ﬁ;kl ¥

0=H,=V,H,=VH,=VH, ©

Multiplying (2) by V'

0= vkvoﬁoj _VOVkHoj = _Hrj Rf;ko - ﬁm Rjko 4
By (4) we have:

0=R"ok0d, 0, H (v,V) + R ko0, H (v,V). 5
Multiplying (5) by &' :

R:0.0,H(V,V)+a R0, H(V,v)=0 (§)

jko™'r

Define the operator ) asfollows:

Y :=Ry0,0, +a R0, )

The Riemannian manifold (M, ) has a positive
(negative) sectional curvature, it results in the
second order partial differential operator Y being
elliptic. From expression p=H(V,v)/o? we
have:

0.p, ®

N
aqp—a VI] i
and then

0,0,p = ocaﬁvinépp + oczv;vééiéjp

+avj (0,V,)0,p. 9)
since

7 % =0,
we get

040,p=0a0 N0, p+a’V.

n

V,0,0,p. (10)

Multiplying the two sides of (10) by R¥ = R*’,
we obtain:

Ii”ﬁaﬂanpzﬁ;jéiéjp+a|§”ﬂ6ﬂ\/;]8ip. (11)
It follows that:
Y(p)=R"0,0,p+B“0,p=0,
(@,=1..,n-1)

where  B" =V Ifiiﬂyéﬂy —afeﬂyayvg. The
equation (12) can be viewed as dlliptic PDE on
each indicatrix S /M and using the maximum

(12)
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principle of Hopf, we find © as a function of X
only. Therefore, thereis a function C(X) such that
H(v,v) =c(X)ar®. Since it must satisfy
V,H (v,v) = 0 it results in the converse being true,

since §OH (v,v) =0.

Now we consider the case of Matsumoto spaces.

2
o

a-p

[8], the authors have obtained the following relation
between H(V,v) and R(Vv,v) for Matsumoto
metrics with constant killing 1-form £

In

Matsumoto metric is of the form F =

2a°

— 3 Sési 0
(0! - Zﬂ) (13)
20> -~ at i

+———V,5, —————=5"s,.
a-2p (a—-2p)

Hvv)=RV.\v)+

Let H(v.v) =co®, where ce R. Weobtain:

O:Ii(v,v)—ZLF)S,S‘OSIO

(o—2p)
+ 20° Vs, - o ~s's, —ca’. 4
a—28 (a—2B)* "

Multiplying (14) by (¢ — 2/3)° removes Y from
the denominators and we can derive the following
identity:

Rat +alrrat =0,

where Rat and Irrat are, respectively, degree 5 and
degree 4 polynomials Y given asfollows:

Rat = —(60.° +8B°)R(V, V) + 20° (o + 4B°)V S,
+2Ba’s’s; + ca®(6a’p +8p°),

Irrat = (o +12B%)R(V, V) - 20°S S,
—80’BV;s, —a's’s; —c(at —120.°B?).
Lemma 3.1. Let F be a Matsumoto metric with
constant killing from g, and H(v,v)=ca?® for

some constants Ce R. Then, (M,F) is a
Riemannian Einstein space.

Proof: We know that & can never be a polynomial
in Y. Otherwise the quadratic o® =a, (X)y'y’
would have been factored into two linear terms. Its

zero set would then consist of a hyper-plan,
contradicting the positive definiteness of a; - Now
suppose the polynomial Rat were not zero. The
above equation would imply that it is the product of
polynomial Irrat with a non-polynomial
factor & . Thisis not possible. So Rat must vanish
and, since ¢ is postive at al Y # 0, we see that

Irrat must be zero as well. Notice that Rat =0
shows that ¢ divides B°R(V,V). Since a” is

an irreducible degree two polynomial iny, and ,B 3
factors into three linear terms, it must be the case

that > divides R(V,V).
That is, (M, ) is an Einstein space. Therefore,

ﬁ(v, V) = ka?, where the function K must be a
constant by the Riemannian Schur’s Lemma for the

case N> 2. But, we can easily reform Rat=0 as
the following formula:

(—8KB° +8%Vs, +8cP°)
= a?(6kB—2Vs, — 2Bs’s, —6CB),

which results in, o’ divides S°. From the

irreducibility of a?, it results that, p=0andFis
a Riemannian Einstein metric.

Proof of theorem 1.1. By theorem 3.1 it results in
H (v,Vv) = ca’, where c is a non-zero constant

and by lemma 3.1 it resuits in R(v,V) = ka2,

where K is differentiable function defined on M
and M =¢. That is to say that, (M,F) is a
Riemannian Einstein space.
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