\textbf{Abstract}

The concept of Γ-semihypergroups is a generalization of semigroups, a generalization of semihypergroups and a generalization of Γ-semigroups. In this paper, we study the concept of semiprime ideals in a Γ-semihypergroup and prove some results. Also, we introduce the notion of Γ-hypergroups and closed Γ-subhypergroups. Finally, we study the concept of Γ-semihypergroups associated to binary relations and give necessary and sufficient conditions on a set of binary relations Γ on a non-empty set S such that S becomes a Γ-semihypergroup or a Γ-hypergroup.

\textbf{Keywords}: Hypergroup; semihypergroup; Γ-semigroup; Γ-semihypergroup; binary relation

\section{1. Introduction}

The \textit{hyperstructure} theory was born in 1934, when Marty introduced the notion of a \textit{hypergroup} [1]. Since then, hundreds of papers and several books have been written on this topic, see [2-5]. A recent book on hyperstructures [6] points out on their applications in cryptography, codes, automata, probability, geometry, lattices, binary relations, graphs and hypergraphs. Algebraic hyperstructures are a generalization of classical algebraic structures. In a classical algebraic structure the composition of two elements is an element, while in an algebraic hyperstructure the composition of two elements is a non-empty set. More exactly, let H be a non-empty set. Then the map $\circ: H \times H \to \mathcal{P}(H)$ is called a hyperoperation where $\mathcal{P}(H)$ is the family of non-empty subsets of H. The couple (H, \circ) is called a hypergroupoid.

In the above definition, if A and B are two non-empty subsets of H and $x \in H$, then we define $A \circ B = \bigcup_{a \in A, b \in B} a \circ b$, $x \circ A = \{x\} \circ A$ and $A \circ x = A \circ \{x\}$.

A hypergroupoid (H, \circ) is called a \textit{semihypergroup} if for every $x, y, z \in H$, we have $x \circ (y \circ z) = (x \circ y) \circ z$, and is called a \textit{quasihypergroup} if for every $x \in H$, $x \circ H = H = H \circ x$. This condition is called the reproduction axiom. The couple (H, \circ) is called a hypergroup if it is a semihypergroup and a quasihypergroup.

The notion of Γ-\textit{semigroups} was introduced by Sen in [7, 8]. Let S and Γ be two non-empty sets. Then S is called a Γ-semigroup if there exists a mapping $S \times \Gamma \times S \to S$, written (a, γ, b) by $a \gamma b$, such that it satisfies the identities $(a \gamma b) \beta c = a \gamma (b \beta c)$ for all $a, b, c \in S$ and $\alpha, \beta \in \Gamma$. Let S be an arbitrary semigroup and Γ a non-empty set. Define a mapping $S \times \Gamma \times S \to S$ by $a \gamma b = ab$ for all $a, b \in S$ and $\gamma \in \Gamma$. It is easy to see that S is a Γ-semigroup. Thus a semigroup can be considered to be a Γ-semigroup. Many classical notions of semigroups have been extended to Γ-semigroups, see ([9, 10]).

Let S be a Γ-semigroup and α be a fixed element in Γ. We define $a \cdot b = a \alpha b$ for all $a, b \in S$. Then (S, \cdot) is a semigroup and is denoted by S_α.

*Corresponding author

Received: 12 October 2010 / Accepted: 20 February 2011
2. Preliminaries and basic definitions

The concept of Γ-semihypergroups was introduced by Davvaz et al. [11, 12]. In this section we introduce some preliminaries and basic definitions of Γ-semihypergroups and give some examples.

Definition 2.1. Let S and Γ be two non-empty sets. Then S is called a Γ-semihypergroup if each $\gamma \in \Gamma$ be a hyperoperation on S, i.e., $x\gamma y \subseteq S$ for every $x, y \in S$, and for every $\alpha, \beta \in \Gamma$ and $x, y, z \in S$ we have the associative property that is $x\alpha(y\beta z) = (x\alpha y)\beta z$.

Let A and B be two non-empty subsets of S and $\gamma \in \Gamma$. Then we define:
\[A\gamma B = \bigcup \{a\gamma b \mid a \in A, b \in B\}, \]
and
\[A\Gamma B = \bigcup_{\gamma \in \Gamma} A\gamma B = \bigcup \{a\gamma b \mid a \in A, b \in B \text{ and } \gamma \in \Gamma\}. \]

A Γ-semihypergroup S is called commutative if for every $x, y \in S$ and for every $\gamma \in \Gamma$ we have $x\gamma y = y\gamma x$. A non-empty subset A of S is called a Γ-subsemihypergroup of S if $A\Gamma A \subseteq A$.

Let (S, \cdot) be a semihypergroup and let $\Gamma = \{\cdot\}$. Then S is a Γ-semihypergroup. So every semihypergroup is a Γ-semihypergroup.

Let S be a Γ-semihypergroup and $\alpha \in \Gamma$, if we define $a \cdot b = a\alpha b$ for every $a, b \in S$ then (S, \cdot) becomes a semihypergroup, we denote it by S_{α}.

Now, we give some other examples of Γ-semihypergroups.

Example 1. Let G be a group and $\Gamma = \{\alpha, \beta\}$. Then for every $x, y \in G$, we define $x\alpha y = xy$ and $x\beta y = G$. Then G is a Γ-semihypergroup.

Example 2. Let (S, \leq) be a totally ordered set and Γ be a non-empty subset of S. We define
\[x\gamma y = \{z \in S \mid z \geq \max\{x, \gamma, y\}\}, \]
for every $x, y \in S$ and $\gamma \in \Gamma$. Then S is a Γ-semihypergroup.

Example 3. Let S be a Γ-semigroup and P be a non-empty subset of S. Let $\Gamma_P = \{\alpha, x \in \Gamma\}$. If we define $x\alpha_P y = x\alpha P\alpha y$, for every $x, y \in S$ and $\alpha \in \Gamma$, then S is a Γ_P-semihypergroup.

Let S be a Γ-semihypergroup. We define a relation ρ on $S \times \Gamma$ as follows:
\[(x, \alpha)\rho(y, \beta) \iff x\alpha s = y\beta s, \forall s \in S.\]

Obviously ρ is an equivalence relation. Let $[x, \alpha]$ denote the equivalence class containing (x, α). Let $M = \{[x, \alpha] \mid x \in S, \alpha \in \Gamma\}$. We define the hyperoperation \circ on M as follows:
\[[x, \alpha] \circ [y, \beta] = \{z, \gamma \mid z = x\alpha y\}, \text{ for all } [x, \alpha], [y, \beta] \in M.\]

Since $(x\alpha y)\beta z = x\alpha(y\beta z)$, for all $x, y, z \in S$ and $\alpha, \beta, \gamma \in \Gamma$, then
\[[x, \alpha] \circ ([y, \beta] \circ [z, \gamma]) = ([x, \alpha] \circ [y, \beta]) \circ [z, \gamma], \text{ for all } [x, \alpha], [y, \beta], [z, \gamma] \in M.\]

Thus the hyperoperation \circ is associative, so (M, \circ) is a semihypergroup. This semihypergroup is called the left operator semihypergroup of S.

Let S be a Γ-semihypergroup. If there exist elements $e \in S$ and $\delta \in \Gamma$ such that $e\delta x = x$ for every $x \in S$, then S is said to have a left partial unity which is denoted by e_{δ}. It is easy to check whether e_{δ} is a left partial unity of S, then $[e, \delta]$ is a left unity of the left operator semihypergroup M.

Example 4. Consider Example 1 and let e be the identity element of G. Then $e_{\delta} = e$ is a left partial unity of the Γ-semihypergroup G.

The concept of Γ-hyperideals of a Γ-semihypergroup was defined and studied in [12].

Definition 2.2. A non-empty subset I of a Γ-semihypergroup S is called a left (right) Γ-hyperideal, "ideal, for short" of S, if $S\Gamma I \subseteq I$ ($I\Gamma S \subseteq I$). S is called a left (right) simple Γ-semihypergroup if it has no proper left (right) ideal. S is simple if S has no proper left and right ideals.
Let A be a non-empty subset of a Γ-semihypergroup S. Then the intersection of all ideals of S containing A is an ideal of S generated by A, and denoted by $<A>$.

Example 5. Consider Example 4. Put $S = N$ with natural order. Then the subset $I_n = \{n, n+1, n+2, \cdots\}$ is an ideal of S, for every $n \in \mathbb{N}$.

The following lemmas and theorem were proved in [12].

Lemma 2.3. Let S be a Γ-semihypergroup. If A is a non-empty subset of S, then

$$<A> = A \cup \Gamma A S \cup S T A \cup S T A \Gamma S.$$

One can see that, if S is a commutative Γ-semihypergroup and $\phi \neq A \subseteq S$, then $<A> = A \cup \Gamma A S$. If S is a commutative Γ-semihypergroup with left partial unity, then $<A> = \Gamma A S$.

Lemma 2.4. Let S be a Γ-semihypergroup and Λ be a non-empty set such that for every $\lambda \in \Lambda$, I_λ is an ideal of S. Then the following assertions hold:

1. $\bigcup_{\lambda \in \Lambda} I_\lambda$ is an ideal of S;
2. $\bigcap_{\lambda \in \Lambda} I_\lambda$ is an ideal of S.

Definition 2.5. A proper ideal P of a Γ-semihypergroup S is called a prime ideal, if for every ideal I and J of S, $I J \subseteq P$ implies $I \subseteq P$ or $J \subseteq P$. If S is a commutative, then a proper ideal P is prime if and only if $a \Gamma b \subseteq P$ implies $a \in P$ or $b \in P$, for any $a, b \in S$.

Example 6. Consider Example 2. Put $S = \Gamma = \{1, 2, \cdots, n\}$ for some natural number n.

Then, all ideals of S have the form $I_i = \{i, i+1, \cdots, n\}$, for every $i \in S$ and I_2 is a prime ideal of S.

Theorem 2.6. Let S be a Γ-semihypergroup and P be a left ideal of S. Then P is a prime ideal of S if and only if for all $x, y \in S$, $x \Gamma S y \subseteq P$ implies that $x \in P$ or $y \in P$.

Lemma 2.7. Let S be a commutative Γ-semihypergroup with a left partial unity and M be a maximal ideal of S. Then M is a prime ideal of S.

Proof: Suppose that M is a maximal ideal and e_δ is the left partial unity of S. Let $x, y \in S$ such that $x \Gamma y \subseteq M$. Then we prove that $x \in M$ or $y \in M$. If $x \not\in M$, then $M = <M, x>$, so by maximality of M we have $S = <M, x>$. Since $e_\delta \not\in M$, it follows that there exist $s \in S$ and $y \in \Gamma$ such that $e_\delta = x\gamma S$. Then, we have

$$y = e_\delta \gamma y = (x\gamma S)\gamma y \subseteq x\Gamma y \subseteq M.$$

Similarly, if $y \not\in M$, then one proves that $x \not\in M$. Therefore, M is a prime ideal of S.

Proposition 2.8. Let S be a Γ-semihypergroup with a left partial unity and I be a proper ideal of S. Then there exists a maximal ideal of S containing I.

Proof: By Lemma 2.4 and Zorn's lemma the proof is obvious.

Let S be a Γ-semihypergroup and M be the left operator semihypergroup of S. Then for $A \subseteq M$, Davvaz et al. in [12] defined A^+ as follows:

$$A^+ = \{x \in S : [x, \alpha] \in A \text{ for all } \alpha \in \Gamma\}.$$

Similarly, for $I \subseteq S$, they defined I^+ as follows:

$$I^+ = \{[x, \alpha] \in M : x\alpha s \subseteq I \text{ for all } s \in S\}.$$

If I is an ideal of S and A is a hyperideal of M, then $I \subseteq (I^+)^+$ and $A \subseteq (A^+)^+.$

We recall the following theorems from [12].

Theorem 2.9. [12] Let S be a Γ-semihypergroup and M be its left operator semihypergroup. Then the following assertions hold:

1. If A is a right hyperideal of M, then A^+ is a right ideal of S.

(2) If I is a right ideal of S then, I^* is a right hyperideal of M.

Theorem 2.10. [12] Let S be a Γ-semihypergroup with a left partial unity and M be its left operator semihypergroup. If I is a right ideal of S, then $I = (I^*)^*$.

3. Semiprime ideals of Γ-semihypergroups

In this section, we introduce the concept of semiprime ideals of a Γ-semihypergroup and prove some results.

Definition 3.1. Let S be a Γ-semihypergroup. Then a proper left (right) ideal P of S is said to be a left (right) semiprime ideal, if for any left (right) ideal A of S, $A\Gamma A \subseteq P$ implies that $A \subseteq P$. A proper ideal P is called semiprime ideal if P is both left and right semiprime ideal of S.

Example 7. Let $S = \Gamma = \{1, 2, 3, \cdots, n\}$ for some $n \in \mathbb{N}$. For every $x, y \in S$ and $\alpha \in \Gamma$ we define the following hyperoperation on S

$$x\alpha y = \{s \in S \mid s \geq \max\{x, \alpha, y\}\}.$$

Then S is a Γ-semihypergroup and $I_i = \{i, i+1, \cdots, n\}$ is a semiprime ideal of S for $1 \leq i \leq n$.

Lemma 3.2 Let S be a Γ-semihypergroup with a left partial unity and P be a left ideal of S. Then P is a left semiprime ideal of S if and only if for every $x, y \in S$ we have

$$x\Gamma S\Gamma x \subseteq P \Rightarrow x \in P.$$

Proof: Suppose that P is a left semiprime ideal of S and $x\Gamma S\Gamma x \subseteq P$ for $x \in S$. Then $S\Gamma x\Gamma S\Gamma x \subseteq S\Gamma P \subseteq P$. Since P is a left semiprime ideal and $S\Gamma x$ is a left ideal of S, it follows that $x \in S\Gamma x \subseteq P$.

Conversely, let A be an ideal of S such that $A\Gamma A \subseteq P$. If $a \in A$, then $a\Gamma S\Gamma a \subseteq A\Gamma A \subseteq P$. So, by the above implication $a \in P$ thus $A \subseteq P$.

Lemma 3.3. Let S be a Γ-semihypergroup and M be its left operator semihypergroup. Then the following statements hold:

1. If P is a semiprime ideal of M, then P^\prime is a semiprime ideal of S.
2. If S has a left partial unity and Q is a semiprime ideal of S, then Q^\prime is a semiprime ideal of M.

Proof:
(1) Suppose that P is a semiprime ideal of M and A is an ideal of S such that $A\Gamma A \subseteq P^\prime$. Then $[A\Gamma A, \Gamma] \subseteq P$ so $[A, \Gamma] \cap [A, \Gamma] \subseteq P$. Since $[A, \Gamma]$ is an ideal of M and P is a semiprime ideal of M, it follows that $[A, \Gamma] \subseteq P$ hence $A \subseteq P^\prime$. Thus P^\prime is a semiprime ideal of S.

(2) Suppose that Q is a semiprime ideal of S and A is an ideal of M such that $A \cap A \subseteq Q^\prime$. First, we show that $A^\prime \cap A^\prime \subseteq (A \cap A)^\prime$. Let $t \in A^\prime \cap A^\prime$. Then there exist $x, y \in A^\prime$ and $\gamma \in \Gamma$ such that $t = x\gamma y$. So $[t, \alpha] \in [x, \gamma] \cap [y, \alpha] \subseteq A \cap A$ for every $\alpha \in \Gamma$. Thus $t \in (A \cap A)^\prime$, so $A^\prime \cap A^\prime \subseteq (A \cap A)^\prime$. Now, from $A \cap A \subseteq Q^\prime$ and Theorem 2.10 we have

$$A^\prime \cap A^\prime \subseteq (A \cap A)^\prime \subseteq (Q^\prime)^\prime = Q.$$

Since Q is a semiprime ideal and A^\prime is an ideal of S, it follows that $A^\prime \subseteq Q$. Thus $A \subseteq (A^\prime)^\prime \subseteq Q^\prime$. Therefore, Q^\prime is a semiprime ideal of M.

Lemma 3.4. Let P_i be a prime ideal of a Γ-semihypergroup S for every $i \in I$ and let $P = \bigcap_{i \in I} P_i$. Then if $P \neq \emptyset$, then P is a semiprime ideal of S.

Proof: It is immediate.

Lemma 3.5. Let T be a Γ-subsemihypergroup and I be an ideal of the Γ-semihypergroup S such that $I \cap T = \emptyset$. Then T is contained in a Γ-subsemihypergroup that is maximal with respect to the property of not meeting I.

Proof: Since the set \(A = \{ K | T \leq K \leq S \text{ and } K \cap I = \emptyset \} \) is non-empty, it follows that by Zorn’s lemma, \(A \) has a maximal element that satisfies the theorem.

Lemma 3.6. Let \(T \) be a commutative \(\Gamma \)-subsemihypergroup and \(I \) be an ideal of the \(\Gamma \)-semihypergroup \(S \) such that \(I \cap T = \emptyset \). Then there exists a prime ideal of \(S \), say \(P \), such that \(I \subseteq P \) and \(P \cap T = \emptyset \).

Proof: By Zorn’s lemma, there exists an ideal \(P \) such that \(P \) is maximal with respect to properties of \(I \subseteq P \) and \(P \cap T = \emptyset \). We claim that \(x, y \in S \setminus P \). Then, we show that \(x \mathcal{I} \mathcal{G} \mathcal{T} \mathcal{Y} \subseteq P \). Since \(x, y \notin P \) and \(P \) is maximal, it follows that \(< P, x > \cap T \neq \emptyset \) and \(< P, y > \cap T \neq \emptyset \).

Thus, there exist \(s, t \in S \) such that \(s < P, x > \cap T \) and \(t < P, y > \cap T \). From the property \(P \cap T = \emptyset \), we have only four cases: (i) \(s = s, x \alpha \) and \(t = t, \beta \gamma \) for some \(s, t, \alpha \in S \) and \(\alpha, \beta \in \Gamma \), (ii) \(s = s, x \alpha \) and \(t = t, \beta \gamma \) for some \(s, t, \alpha \in S \) and \(\alpha, \beta \in \Gamma \), (iii) \(s = x \) and \(t = t, \beta \gamma \) for some \(t, \beta \in S \) and \(\alpha \in \Gamma \), and (iv) \(s = x \) and \(t = y \). If (i) holds, then \(s \mathcal{I} \mathcal{G} \mathcal{I} \mathcal{Y} \subseteq (s, x \alpha) \Gamma (t, \beta \gamma) \subseteq x \mathcal{I} \mathcal{G} \mathcal{I} \mathcal{Y} \).

Now, since \(T \) is a \(\Gamma \)-subsemihypergroup, it follows that \(x \mathcal{I} \mathcal{G} \mathcal{I} \mathcal{Y} \subseteq T \). Thus \(x \mathcal{I} \mathcal{G} \mathcal{I} \mathcal{Y} \subseteq P \). Similarly, in the other cases we conclude that \(x \mathcal{I} \mathcal{G} \mathcal{I} \mathcal{Y} \subseteq P \). Therefore, \(P \) is a prime ideal of \(S \).

Let \(S \) be a \(\Gamma \)-semihypergroup and \(I \) be an ideal of \(S \). A prime ideal \(P \) of \(S \) is called a minimal prime ideal belonging to \(I \) if \(I \subseteq P \) and there is no prime ideal containing \(I \) and properly contained in \(P \).

Corollary 3.7. If \(Q \) is a prime ideal containing an ideal \(I \), then there exists a minimal prime ideal belonging to \(I \) which is contained in \(Q \).

Definition 3.8. Let \(S \) be a \(\Gamma \)-semihypergroup and \(I \) be an ideal of \(S \). Then the prime radical of \(I \) is defined as the intersection of all prime ideals of \(S \) containing \(I \) and is denoted by \(\sqrt{I} \).

Proposition 3.9. Let \(S \) be a \(\Gamma \)-semihypergroup and \(I \) be an ideal of \(S \). Then the following statements hold:

1. \(\sqrt{I} \) is a semiprime ideal of \(S \);
2. \(\sqrt{I} \cap \mathcal{P}(I) \) is a minimal prime ideal belonging to \(I \).

Proof: (1) It is straightforward.

(2) It is taken from Corollary 3.7.

4. \(\Gamma \)-hypergroups

In this section we study the concept of \(\Gamma \)-hypergroups and give some examples. Also, we introduce the concept of closed \(\Gamma \)-subhypergroups of a \(\Gamma \)-hypergroup.

Definition 4.1. A \(\Gamma \)-semihypergroup \(S \) is called a \(\Gamma \)-hypergroup if \((S, \alpha, \beta) \) is a hypergroup for every \(\alpha, \beta \in \Gamma \).

Example 8. Let \(S = \{a, b, c, d\} \) and \(\Gamma = \{a, b\} \). We define the hyperoperations \(\alpha \) and \(\beta \) as follows:

<table>
<thead>
<tr>
<th>(\alpha)</th>
<th>(a)</th>
<th>(b)</th>
<th>(c)</th>
<th>(d)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a)</td>
<td>{a, b}</td>
<td>{b, c}</td>
<td>{c, d}</td>
<td>{a, d}</td>
</tr>
<tr>
<td>(b)</td>
<td>{b, c}</td>
<td>{c, d}</td>
<td>{a, d}</td>
<td>{a, b}</td>
</tr>
<tr>
<td>(c)</td>
<td>{c, d}</td>
<td>{a, d}</td>
<td>{a, b}</td>
<td>{b, c}</td>
</tr>
<tr>
<td>(d)</td>
<td>{a, d}</td>
<td>{a, b}</td>
<td>{b, c}</td>
<td>{c, d}</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(\beta)</th>
<th>(a)</th>
<th>(b)</th>
<th>(c)</th>
<th>(d)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a)</td>
<td>{b, c}</td>
<td>{c, d}</td>
<td>{a, d}</td>
<td>{a, b}</td>
</tr>
<tr>
<td>(b)</td>
<td>{c, d}</td>
<td>{a, d}</td>
<td>{a, b}</td>
<td>{b, c}</td>
</tr>
<tr>
<td>(c)</td>
<td>{a, d}</td>
<td>{a, b}</td>
<td>{b, c}</td>
<td>{c, d}</td>
</tr>
<tr>
<td>(d)</td>
<td>{a, b}</td>
<td>{b, c}</td>
<td>{c, d}</td>
<td>{a, d}</td>
</tr>
</tbody>
</table>

Then \(S \) is a \(\Gamma \)-hypergroup.

Example 9. Let \(S \) be a non-empty set and \(\Gamma = \{a, \beta\} \). Then for every \(x, y \in S \) and \(a, \beta \in \Gamma \) we define \(x \alpha y = S \) and \(x \beta y = \{x, y\} \). Then \(S \) is a \(\Gamma \)-hypergroup.

Example 10. Let \((S, \cdot) \) be a group. Let \(\Gamma \subseteq \mathcal{P}(S) \). We define \(x \alpha y = x \cdot \alpha \cdot y \) for every
$x, y \in S$ and $\alpha \in \Gamma$. Then S is a Γ-hypergroup.

Example 11. Let (S, \circ) be a hypergroup and $\emptyset \neq \Gamma \subseteq S$. We define $x \alpha y = x \circ \alpha \circ y$ for every $x, y \in S$ and $\alpha \in \Gamma$. Then S is a Γ-hypergroup.

Example 12. Let (G, \ast) be a group and $\{A_\gamma\}_{\gamma \in G}$ be a collection of disjoint sets. Consider $\bigcup_{\gamma \in G} A_\gamma$ and $\Gamma = G$. For $x, y \in S$, there exist $g_x, g_y \in G$ such that $x \in A_{g_x}$ and $y \in A_{g_y}$. We define $x \alpha y = A_{g_x \ast \alpha \ast g_y}$. Then S is a Γ-hypergroup.

Theorem 4.2. [12] Let S be a Γ-semihypergroup. Then S is a simple Γ-semihypergroup if and only if S_α is a hypergroup for every $\alpha \in \Gamma$.

Theorem 4.3. Let S be a Γ-semihypergroup. Then for every $\alpha \in \Gamma$, S_α is a hypergroup if and only if S is left and right simple.

Proof: Suppose that S_α is a hypergroup and I is a left (right) ideal of S. If $x \in I$, then the reproduction axiom implies that $x \alpha S = S = S \alpha x$. On the other hand, we have $S \alpha x \subseteq I$ ($x \alpha S \subseteq I$). Therefore, $I = S$.

Conversely, suppose that S is left and right simple. Then for every $x \in S$ and $\alpha \in \Gamma$, put $I = x \alpha S$. Thus, I is a right ideal of S, for

$I \Gamma S = (x \alpha S) \Gamma S = x \alpha (S \Gamma S) \subseteq x \alpha S = I$

so $x \alpha S = S$. Similarly, we have $S = S \alpha x$. Therefore, S is a Γ-hypergroup.

Corollary 4.4. If S_α is a hypergroup for some $\alpha \in \Gamma$, then for every $\alpha \in \Gamma$, S_α is a hypergroup.

Definition 4.5. A subset H of a Γ-hypergroup is called a Γ-subhypergroup if for every $h, k \in H$ and $\alpha \in \Gamma$ we have $h \alpha k \subseteq H$ and $h \alpha H = H = H \alpha h$.

Definition 4.6. Let S be a Γ-hypergroup. Then a subset H of S is called closed if for every $h, k \in H$, $x \in S$ and $\alpha \in \Gamma$ we have the following implication

$h \in x \alpha H \Rightarrow x \in H$.

Example 13. Let S be a Γ-group and P be a Γ-subgroup of S. Let $\Gamma' = \{\gamma' | \gamma \in \Gamma\}$. Now, for every $x, y \in S$ and $\alpha' \in \Gamma$ we define $x \alpha' y = x \alpha y \cup P$. Then, S is a Γ'-hypergroup.

Theorem 4.4. [2] Let S be a Γ-hypergroup, and α, β are non-empty subsets of Γ. Then S is a Γ-hypergroup if and only if $S_\alpha \cap S_\beta$ is a right ideal of S.

Proof: Suppose that $S_\alpha \cap S_\beta$ is a right ideal of S. Then for every $x \in S$ and $\alpha \in \Gamma$, put $I = x \alpha S$. Thus, I is a right ideal of S, for

$I \Gamma S = (x \alpha S) \Gamma S = x \alpha (S \Gamma S) \subseteq x \alpha S = I$

so $x \alpha S = S$. Similarly, we have $S = S \alpha x$. Therefore, S is a Γ-hypergroup.

Corollary 4.4. If S_α is a hypergroup for some $\alpha \in \Gamma$, then for every $\alpha \in \Gamma$, S_α is a hypergroup.

Definition 4.5. A subset H of a Γ-hypergroup is called a Γ-subhypergroup if for every $h, k \in H$ and $\alpha \in \Gamma$ we have $h \alpha k \subseteq H$ and $h \alpha H = H = H \alpha h$.

Definition 4.6. Let S be a Γ-hypergroup. Then a subset H of S is called closed if for every $h, k \in H$, $x \in S$ and $\alpha \in \Gamma$ we have the following implication

$h \in x \alpha H \Rightarrow x \in H$.

Example 14. Consider $(\mathbb{Z}, +)$ and let $\Gamma = \{\alpha, \beta\}$ where $\alpha = \{-1,1\}$ and $\beta = \{-2,+2\}$. If for every $x, y \in \mathbb{Z}$ we define:

$x \alpha y = \{x + y - 1, x + y + 1\}, x \beta y = \{x + y - 2, x + y + 2\}$.

Then, \mathbb{Z} is a Γ-hypergroup and $H = 2 \mathbb{Z}$ is a closed subset of \mathbb{Z}.

Example 15. Consider $(\mathbb{Z}, +)$ and let $\Gamma = \{\alpha, \beta\}$ where $\alpha = \{-2,2\}$ and $\beta = \{-4,4\}$. If for every $x, y \in \mathbb{Z}$ we define:

$x \alpha y = \{x + y - 2, x + y + 2\}, x \beta y = \{x + y - 4, x + y + 4\}$.

Then \mathbb{Z} is a Γ-hypergroup and $H = 2 \mathbb{Z}$ is a closed Γ-subhypergroup of \mathbb{Z}.

Let S be a Γ-hypergroup. Then two new hyperoperations may be defined on S as follows:

$a / b = \{x \in S | a \in x \alpha b, \alpha \in \Gamma\}$ and $a \setminus b = \{x \in S | a \in b \alpha x, \alpha \in \Gamma\}$.

If A and B are non-empty subsets of S, then

$A / B = \bigcup_{a \in A, b \in B} a / b$ and $A \setminus B = \bigcup_{a \in A, b \in B} a \setminus b$.

Lemma 4.7. Let S be a Γ-hypergroup, A, B, C and D be non-empty subsets of S and $x, y \in S$. Then the following assertions hold:

1. If $A \subseteq B$ and $C \subseteq D$, then $A / C \subseteq B / D$;
2. $(A / B) / C = A / (B \setminus C)$;
3. $(A \setminus B) \setminus C = A \setminus (B \setminus C)$;
4. $y \in x \setminus (x / y)$;
(5) \(y \in x/(x \setminus y); \)

(6) If \(A \) is a closed subset of \(S \), then \(A / A \subseteq A \);

(7) \(A \subseteq (A \Gamma B)/B; \)

(8) If \(H \) is a \(\Gamma \)-subhypergroup, then \(H \subseteq H/H \).

Proof: (1) It is immediate.

(2) Suppose that \(x \in (A/B)/C \). Then, there exist \(a \in A, b \in B \) and \(c \in C \) such that \(x \in (a/b)/c \). So, we have

\[
x \in (a/b)/c \quad \Rightarrow \exists y \in a/b, x \in y/c
\]

\[
\Rightarrow a \in y \Gamma b, x \in x \Gamma c
\]

\[
\Rightarrow a \in (x \Gamma c) \Gamma b = x \Gamma (c \Gamma b)
\]

\[
\Rightarrow \exists z \in c \Gamma b, a \in x \Gamma z
\]

\[
\Rightarrow x \in a/z \subseteq a/(c \Gamma b) \subseteq A/(A \Gamma B).
\]

Thus, \((A/B)/C \subseteq A/(A \Gamma B)\).

Conversely, suppose that \(x \in A/(A \Gamma B) \). Then there exist \(a \in A, b \in B \) and \(c \in C \) such that \(x \in a/(c \Gamma b) \). So there exists \(y \in c \Gamma b \) such that \(x \in a/y \). So \(a \in x \Gamma y \subseteq x \Gamma (c \Gamma b) = (x \Gamma c) \Gamma b \). Thus there exists \(z \in x \Gamma c \) such that \(a \in z \Gamma b \) and so \(x \in z/c, z \in a/b \). Therefore, \(x \in (A/B)/C \).

(3) It is similar to (2).

(4) Let \(a \in x/y \neq \emptyset \). Then \(x \in a \Gamma y \), so \(y \in x \setminus a \subseteq x \setminus (x/y) \).

(5) it is similar to (4).

(6) If \(x \in A/A \), then \(x \in a_1/a_2 \). So \(a_1 \in x \Gamma a_2 \subseteq x \Gamma A \cap A \). Since \(A \) is a closed subset of \(S \), it follows that \(x \in A \). Therefore, \(A / A \subseteq A \).

(7) Suppose that \(x \in A \) and \(y \in x \Gamma B \). Then \(x \in y/B \subseteq (A \Gamma B)/B \).

(8) Suppose that \(H \) is a \(\Gamma \)-subhypergroup and \(h_1 \in H \). Then there exists \(h_2 \in H \) such that \(h_1 \in h_1 \Gamma h_2 \) thus \(h_1 h_1 / h_2 \subseteq H/H \), so \(H \subseteq H/H \).

Theorem 4.8. Let \(S \) be a \(\Gamma \)-hypergroup and \(H \) be a \(\Gamma \)-subhypergroup of \(S \). Then \(H \) is a closed \(\Gamma \)-subhypergroup if and only if \(H \subseteq H/H \).

Proof: Suppose that \(H \) is a closed \(\Gamma \)-subhypergroup. Then, by the previous lemma, \(H \subseteq H/H \subseteq H \). Thus \(H = H/H \).

Conversely, suppose that \(H/H = H \). If \(y \in x \alpha h \cap H \), for \(h \in H \), then \(x \in y/h \subseteq H/H = H \). Therefore, \(H \) is a closed \(\Gamma \)-subhypergroup of \(S \).

Example 16. Let \(G \) be a group with a non trivial center. Let \(P, Q \subseteq Z(G) \) and put \(\alpha, \beta \). For every \(x, y \in G \) we define \(x \alpha y = xyP \) and \(x \beta y = xyQ \). Then \(G \) is a \(\Gamma \)-hypergroup.

Let \(a, b \in G \). Then

\[
a/b = \{x \in G \mid a \in x \Gamma b\} = \{x \in G \mid a \in x \alpha b \cup x \beta b\} = \{x \in G \mid a \in xbP \cup xQb\} = ab^{-1}P^{-1} \cup ab^{-1}Q^{-1}.
\]

If \(H \) is a \(\Gamma \)-subhypergroup of \(G \) containing \(P \) and \(Q \), then for every \(a, b \in H \) we have \(a/b = ab^{-1}P^{-1} \cup ab^{-1}Q^{-1} \subseteq H \), so by the above theorem, \(H \) is a closed \(\Gamma \)-subhypergroup of \(G \).

Lemma 4.9. Let \(S \) be a \(\Gamma \)-semihypergroup and \(H \) and \(K \) be two closed \(\Gamma \)-subhypergroups of \(S \). Then \(H \cap K = H \cap K \).

Proof: Since \(H \cap K \subseteq H \cap K \), it follows that \(H \cap K \subseteq H \cap K \). Now, we prove the converse of inclusion. Since \(H \) and \(K \) are closed \(\Gamma \)-subhypergroups of \(S \), it follows that \(H \cap K \) is a closed subset of \(S \). Now, by the previous theorem and Lemma 4.7, we have

\[
H = H/H \subseteq (H \cap K)/H/H = (H \cap K)/(H \cap K) \subseteq H \cap K.
\]

Similarly, \(K \subseteq H \cap K \). Therefore, \(H \cap K = H \cap K \).

5. \(\Gamma \)-semihypergroups associated to binary relations

The connections between hyperstructures and binary relations have been analyzed by many
researchers, such as Rosenberg [13], Corsini [14], Cristea and Stefanescu [15] and others [16, 17, 18].

In this section we associate to a set of binary relations on a non-empty set S, say Γ, a partial Γ-hypergroupoid and get necessary and sufficient conditions such that it is a Γ-semihypergroup or a Γ-hypergroup.

Rosenberg [13] has associated a partial hypergroupoid RH, with a binary relation R defined on a non-empty set H, where, for any $Hyx, xxx = L = \{ z H | (x, z) R \}$ and $x y = x x y y$.

An element Hx is called an outer element for R if there exists Hh such that $.),(2 Rxh .)$

Rosenberg proved the next theorem.

Theorem 5.1. [13] RH is a hypergroup if and only if

1. R has full domain;
2. R has full range;
3. $R \subseteq R^2$;
4. If $(a, x) \in R^2$, then $(a, x) \in R$, whenever x is an outer element.

Let R be a binary relation on a non-empty set S. Then an element $x \in S$ is called a semiouter element for the relation R if there exists $h \in S$ such that $(h, x) \not\in R$.

Let R be a binary relation on a non-empty set S, $A \subseteq S$ and $x, y \in S$. Then we use the following notations:

$$L_*^R = R(x) = \{ z \in S | (x, z) \in R \};$$

$$R(x, y) = \{ z \in S | (x, z) \in R \lor (y, z) \in R \};$$

$$R(A) = \{ z \in S | (a, z) \in R, \exists a \in A \};$$

$$R^{-1}(A) = \{ z \in S | (z, a) \in R, \exists a \in A \}. $$

Definition 5.2. Let S be a non-empty set and \mathcal{R} be a set of binary relations on S. Then for every $\alpha \in \mathcal{R}$ we can associate a hyperoperation \circ_{α} on S as follows:

$$x \circ_{\alpha} y = \alpha(x, y) = L^\alpha_x \cup L^\alpha_y, \forall x, y \in S.$$

So (S, \circ_{α}) is a partial hypergroupoid. Now, let $\Gamma = \{ \circ_{\alpha} | \alpha \in \mathcal{R} \}$. Then S is a partial Γ-hypergroupoid and is denoted by S_Γ.

To simplify, we write \circ_{α} by α and consider $\Gamma = \mathcal{R}$, in this way for every $\alpha \in \Gamma$ and $x, y \in S$ we have $x \alpha y = x \circ_{\alpha} y = \alpha(x, y) = L^\alpha_x \cup L^\alpha_y$.

It is easy to see that if for every $\alpha \in \Gamma$ we have $\alpha^{-1}(S) = S$, then S_Γ is a Γ-hypergroupoid.

Example 17. Let $S = \{1,2,3,4,5\}$ and $\Gamma = \{\alpha, \beta, \gamma\}$ such that

$$\alpha = \{(1,1),(1,2),(2,4),(3,4),(4,5),(4,4),(5,2)\},$$

$$\beta = \{(1,1),(1,3),(1,4),(2,5),(3,3),(4,1),(5,4),(5,3)\},$$

$$\gamma = \{(1,3),(2,3),(3,4),(4,5),(5,1),(5,5)\}.$$

Then S_Γ is a Γ-hypergroupoid.

Lemma 5.3. Let S be a non-empty set and Γ be a set of binary relations on S such that S_Γ is a Γ-hypergroupoid. Then the following assertions hold:

1. S_Γ is a commutative Γ-hypergroupoid;
2. For every $x \in S$ and $\alpha \in \Gamma$, $x \alpha x = \alpha(x)$;
3. For every $x, y, z \in S$ and $\alpha, \beta \in \Gamma$, $x \alpha(y \beta z) = \alpha(x) \cup \beta \alpha(y, z)$;
4. For every $x, y, z \in S$ and $\alpha, \beta \in \Gamma$, $(x \alpha y) \beta z = \alpha \beta(x, y) \cup \beta(z)$.

Proof: The proof is straightforward.

In the following we provide some conditions on Γ such that S_Γ be a Γ-semihypergroup.

Theorem 5.4. Let S be a non-empty set and Γ be a set of binary relations on S such that S_Γ be a Γ-hypergroupoid. Then S_Γ is a Γ-semihypergroup if and only if the following conditions hold:

1. (GSH1) For every $\alpha, \beta \in \Gamma$, $\alpha \subseteq \alpha \beta$;
2. (GSH2) If x is a semiouter element for the relation $\alpha \beta$ and $(a, x) \in \beta \alpha$, then $(a, x) \in \beta$ for every $a \in S$ and $\alpha, \beta \in \Gamma$;
If \(x \) is a semiouter element for the relations \(\alpha \beta \) and \(\beta \) and \((a,x) \in \beta \alpha \), then \((a,x) \in \alpha \beta \), for every \(a \in S \) and \(\alpha, \beta \in \Gamma \).

Proof: Suppose that \(S_\Gamma \) is a \(\Gamma \)-semihypergroup. We prove the conditions \((\Gamma \text{ SH}1), (\Gamma \text{ SH}2)\) and \((\Gamma \text{ SH}3)\) of the theorem.

\((\Gamma \text{ SH}1) \) Let \(x, y \in S \) and \(\alpha, \beta \in \Gamma \) such that \(y \in \alpha (x) \). Then we consider two cases:

Case (i) \(y \in \beta (y) \). Then \(y \in \alpha \beta (x) \).

Case (ii) \(y \notin \beta (y) \). Then we have \((x \alpha \alpha) \beta y = x \alpha (x \beta y)\) so the associativity axiom and the previous lemma conclude that \(\alpha \beta (x) \cup \beta (y) = \alpha (x) \cup \beta \alpha (x) \cup \beta \alpha (y) \).

Now, since \(y \in \alpha (x) \) and \(y \notin \beta (y) \), it follows that \(y \notin \alpha \beta (x) \). Therefore, \(\alpha \subseteq \alpha \beta \).

\((\Gamma \text{ SH}2) \) Suppose that \(x \) is a semiouter element for the relation \(\alpha \beta \) and \(x \in \beta \alpha (a) \). So there exists \(h \in S \) such that \(x \notin \alpha \beta (h) \). Thus the associativity axiom and the previous lemma conclude that \((h \alpha h) \beta h = h \alpha (h \beta a) \), thus \(\alpha \beta (h) \cup \beta (a) = \alpha (h) \cup \beta \alpha (h) \cup \beta \alpha (a) \).

Since \(x \in \beta \alpha (a) \) and \(x \notin \alpha \beta (h) \), it follows that \(x \notin \beta (a) \).

\((\Gamma \text{ SH}3) \) Suppose that \(x \) is a semiouter element for the relations \(\alpha \beta \) and \(\beta \) and let \(x \in \beta \alpha (a) \). So there exist \(h, t \in S \) such that \((h, x) \notin \alpha \beta \) and \((t, x) \notin \beta \). Now, we have \(h \alpha (\alpha \beta) = (h \alpha a) \beta t \) thus \(\alpha (h) \cup \beta \alpha (a, t) = \alpha \beta (a, h) \cup \beta \alpha (t) \).

Since \(x \in \beta \alpha (a) \), \(x \notin \alpha \beta (h) \) and \(x \notin \beta (t) \), it follows that \(x \in \alpha \beta (a) \).

Conversely, suppose that \(S \) is a non-empty set and \(\Gamma \) be a set of binary relations on \(S \) such that \(S_\Gamma \) is a \(\Gamma \)-hypergroupoid and the conditions \((\Gamma \text{ SH}1), (\Gamma \text{ SH}2)\) and \((\Gamma \text{ SH}3)\) of the theorem are satisfied. We prove the associativity axiom for \(S_\Gamma \).

Let \(x, y, z, t \in S \) and \(\alpha, \beta \in \Gamma \) such that \(t \in x \alpha (y \beta z) = \alpha (x) \cup \beta \alpha (y, z) \). Then we have three cases:

Case (i) \(t \in \alpha (x) \). Then by the condition \((\Gamma \text{ SH}1) \) \(t \in \alpha \beta (x) \).

Case (ii) \(t \in \beta \alpha (x) \). Then if \(t \notin \alpha \beta (x) \cup \beta (z) \), then \(t \) is a semiouter element for the relations \(\alpha \beta \) and \(\beta \). So by the condition \((\Gamma \text{ SH}3) \) \(t \in \alpha \beta (y) \).

Case (iii) \(t \in \beta \alpha (z) \). Then if \(t \notin \alpha \beta (x) \), then \(t \) is a semiouter element for the relation \(\alpha \beta \) so by the condition \((\Gamma \text{ SH}2) \), \(t \in \beta (z) \). Thus \(x \alpha (y \beta z) \subseteq (x \alpha y) \beta z \). In the same way, we can prove the converse inclusion. Therefore, \(S_\Gamma \) is a \(\Gamma \)-semihypergroup.

Example 18. Let \(S = \{1,2,3\} \) and \(\Gamma = \{\alpha, \beta\} \) such that \(\alpha = \{ (1,2),(2,2),(2,3)\}, (3,2) \} \) and \(\beta = \{ (1,3),(2,2),(3,2)\}, (3,3) \} \). Then we have the table of hyperoperations \(\alpha \) and \(\beta \) as follows:

<table>
<thead>
<tr>
<th>(\alpha)</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>{2}</td>
<td>{2,3}</td>
<td>{2,3}</td>
</tr>
<tr>
<td>2</td>
<td>{2,3}</td>
<td>{2,3}</td>
<td>{2,3}</td>
</tr>
<tr>
<td>3</td>
<td>{2,3}</td>
<td>{2,3}</td>
<td>{3}</td>
</tr>
</tbody>
</table>

Then \(S_\Gamma \) is a \(\Gamma \)-semihypergroup.

Theorem 5.5. Let \(S \) be a non-empty set and \(\Gamma \) be a set of binary relations on \(S \) such that \(S_\Gamma \) is a \(\Gamma \)-semihypergroup. Then \(S_\Gamma \) is a \(\Gamma \)-hypergroup if and only if \(\alpha (S) = S \) for every \(\alpha \in \Gamma \).

Proof: Suppose that \(S_\Gamma \) is a \(\Gamma \)-hypergroup. Then \(S_\alpha \) is a hypergroup for every \(\alpha \in \Gamma \). So by Theorem 5.1, \(\alpha \) has full range, thus \(\alpha (S) = S \).

Conversely, suppose that \(\alpha (S) = S \) for every \(\alpha \in \Gamma \) so \(S_\alpha \) is a hypergroup. Therefore, \(S_\Gamma \) is a \(\Gamma \)-hypergroup.

Example 19. Let \(S = \{1,2,3\} \) and \(\Gamma = \{\alpha, \beta\} \) such that \(\alpha = \Delta_S \cup \{ (2,1),(3,2) \} \) and \(\beta = \Delta_S \cup \{ (3,1) \} \), where \(\Delta_S \) is the diagonal
relation on S. Then we have the table of hyperoperations α and β as follows:

<table>
<thead>
<tr>
<th>α</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>${1}$</td>
<td>${1,2}$</td>
<td>S</td>
</tr>
<tr>
<td>2</td>
<td>${1,2}$</td>
<td>${1,2}$</td>
<td>S</td>
</tr>
<tr>
<td>3</td>
<td>S</td>
<td>S</td>
<td>${2,3}$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>β</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>${1}$</td>
<td>${1,2}$</td>
<td>${1,3}$</td>
</tr>
<tr>
<td>2</td>
<td>${1,2}$</td>
<td>${2}$</td>
<td>S</td>
</tr>
<tr>
<td>3</td>
<td>S</td>
<td>${1,3}$</td>
<td>S</td>
</tr>
</tbody>
</table>

Then S is a Γ-hypergroup.

Lemma 5.6. Let S be a non-empty set and Γ be a set of binary relations on S such that S_Γ is a Γ-semihypergroup. Then $I = \Gamma(S) = \bigcup_{\alpha \in \Gamma} \alpha(S)$ is a minimal ideal of S_Γ.

Proof: Suppose that $a \in I$, $s \in S$ and $\alpha \in \Gamma$. Then we have $s \alpha a = \alpha(s) \cup \alpha(a) \subseteq \alpha(S) \subseteq I$. So I is an ideal of S_Γ. Furthermore, if J is an ideal of S_Γ and $b \in J$, then for every $s \in S$ and $\alpha \in \Gamma$, $s \alpha b = \alpha(s) \cup \alpha(b) \subseteq J$. So $\alpha(S) \subseteq J$ hence $I \subseteq J$.

Proposition 5.7. Let S be a non-empty set and Γ be a set of binary relations on S such that S_Γ is a Γ-semihypergroup. Then $S_{\overline{\oplus}}$ is a $\Gamma_{\overline{\oplus}}$-semihypergroup.

Proof: We prove that $S_{\overline{\oplus}}$ satisfies the conditions (SH1), (SH2) and (SH3) of Theorem 5.4. Suppose that $\alpha', \beta' \in \Gamma_{\overline{\oplus}}$. Then there exist $\alpha, \beta, \delta, \gamma \in \Gamma$, such that $\alpha' = \alpha \cup \beta$ and $\beta' = \delta \cup \gamma$. Since S_Γ is a Γ-semihypergroup, it follows that $\alpha \subseteq \alpha \delta \cup \alpha \gamma$ and $\beta \subseteq \beta \delta \cup \beta \gamma$. Thus $\alpha' = \alpha \cup \beta \subseteq \alpha \delta \cup \alpha \gamma \cup \beta \delta \cup \beta \gamma = \alpha \cup \beta \delta \cup \beta \gamma = \theta' \phi'$.

So the condition (SH1) holds.

Suppose that $x \in S$ is a semiouter element for the relation θ' and let $(a, x) \in \phi' \theta'$. Then there exists $h \in S$ such that $(h, x) \notin \theta' \phi'$. Thus x is a semiouter element for the relations $\alpha \delta, \alpha \gamma, \beta \delta$ and $\beta \gamma$. Since $(a, x) \in \phi' \theta'$, it follows that $(a, x) \in \delta \alpha, (a, x) \in \gamma \alpha, (a, x) \in \delta \beta$ or $(a, x) \in \gamma \beta$. From the condition (SH2) for S_Γ, we conclude that $(a, x) \in \delta \alpha, (a, x) \in \gamma \alpha, (a, x) \in \delta \beta$ or $(a, x) \in \gamma \beta$, then from the condition (SH3) for S_Γ, we conclude that $(a, x) \in \alpha \delta, (a, x) \in \alpha \gamma, (a, x) \in \delta \beta$ or $(a, x) \in \gamma \beta$, respectively, and the condition (SH3) holds. Therefore, $S_{\overline{\oplus}}$ is a $\Gamma_{\overline{\oplus}}$-semihypergroup.

Let S_R be a hypergroupoid associated to a binary relation R. Let $\Gamma_R = \{\alpha_i \mid i \in \mathbb{N}\}$. Now, for every $x, y \in S$ and $\alpha_i \in \Gamma$ we define $x \alpha_i y = \{z \mid (x, z) \in R^i \lor (y, z) \in R^i\} = L_{\alpha_i}^R \cup L_y^{\alpha_i}$.

Then S is a Γ_R-hypergroupoid and denoted by $S_{\overline{\oplus}}$. In the following we verify conditions such that S is a Γ_R-semihypergroup.

Lemma 5.8. Let S_R be a semihypergroup associated to a binary relation R. Then if $(z, t) \in R^{i+j}$ and $(x, t) \notin R^{i+j}$, then $(z, t) \in R^j$, for every $x, z, t \in S$ and $i, j \in \mathbb{N}$.

Proof: We prove by mathematical induction on $i + j$. If $i + j = 2$, $(z, t) \in R^2$ and $(x, t) \notin R^2$, then t is an outer element for R so $(z, t) \in R$.

Suppose that the result holds for \(i + j - 1\). Now, let \((z, t) \in R^{i+j}\) and \((x, t) \notin R^{i+j}\). Then there exists \(s \in S\) such that \((z, s) \in R^2\) and \((s, t) \in R^{i+j-1}\). Thus \((x, s) \notin R^2\), that is, \(s\) is an outer element for \(R\). Therefore, \((z, t) \in R^{i+j}\). Now, we have \((z, t) \in R^{i+j-1}\) and \((x, t) \notin R^{i+j-1}\). Thus \((z, t) \in R^j\).

Lemma 5.9. Let \(S_R\) be a semihypergroup associated to a binary relation \(R\). Then \(S_{T_R}\) is a \(\Gamma_R\)-semihypergroup.

Proof: We prove the associativity law. Suppose that \(x, y, z \in S_r\) and \(\alpha_i, \alpha_j \in \Gamma\). Then,

\[
x\alpha_i(y\alpha_jz) = L^{i+j}_x \cup L^{i+j}_y \cup L^{i+j}_z
\]

and \((x\alpha_iy)\alpha_jz = L^{i+j}_x \cup L^{i+j}_y \cup L^{i+j}_z\).

If \(t \in L^{i+j}_x\) and \(t \notin L^{i+j}_x\), then by the previous lemma \(t \in L^{i+j}_x \subseteq (x\alpha_iy)\alpha_jz\). Therefore,

\[
x\alpha_i(y\alpha_jz) \subseteq (x\alpha_iy)\alpha_jz.
\]

In a similar way we have the inverse inclusion.

Example 20. Let \(S = \{1, 2, 3\}\) and \(R = \{(1, 2), (1, 3), (2, 2), (3, 2)\}\). Then \(S_R\) is a semihypergroup. Let \(\Gamma_R = \{\alpha_1, \alpha_2\}\). Then we have the following hyperoperations:

<table>
<thead>
<tr>
<th>(\alpha_1)</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>{1, 3}</td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td>2</td>
<td>S</td>
<td>{2}</td>
<td>{2, 3}</td>
</tr>
<tr>
<td>3</td>
<td>S</td>
<td>{2, 3}</td>
<td>{2}</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(\alpha_2)</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>S</td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td>2</td>
<td>S</td>
<td>{2}</td>
<td>{2, 3}</td>
</tr>
<tr>
<td>3</td>
<td>S</td>
<td>{2, 3}</td>
<td>{2}</td>
</tr>
</tbody>
</table>

Then \(S_{T_R}\) is a \(\Gamma_R\)-semihypergroup.

6. Conclusion

In this work, we presented the concept of semiprime ideals in a \(\Gamma\)-semihypergroup and proved some results. Also, we introduced the notion of \(\Gamma\)-hybergroups and closed \(\Gamma\)-subhybergroups. Finally, we defined the concept of \(\Gamma\)-semihypergroups and \(\Gamma\)-hybergroups associated to a set of binary relations. Then we find the necessary and sufficient conditions on a set of binary relations \(\Gamma\) on a non-empty set \(S\) such that \(S\) becomes a \(\Gamma\)-semihypergroup or a \(\Gamma\)-hypergroup.

Our future research will consider \(\Gamma\)-semihyperrings associated to binary relations.

References

