[ JST (2012) A4: 453-460
Iranian Journal of Science & Technology

http://www.shirazu.ac.ir/en

Existence and local attractivity of solutions of a nonlinear
guadratic functional integral equation

A. Aghgani* and N. Sabzali

Department of Mathematics, Karaj Branch, Islamic Azad University, Karaj, Iran
E-mails: aghajani @iust.ac.ir & Sabzali.navid3@gmail.com

Abstract

In this paper, using the tools involving measures of noncompactness and Darbo fixed point theorem for
condensing operator, we study the existence of solutions for a large class of generalized nonlinear quadratic
functional integral equations. Also, we show that solutions of these integral equations are locally attractive.
Furthermore, we present an example to show the efficiency and usefulness of our results.

Keywords. Quadratic integral equations; measure of noncompactness, modulus of continuity; uniformly locally

attractive

1. Introduction

In this paper, we discuss the problem of the
existence of solutions for a generalized nonlinear
quadratic functional equation of the form

X(t) = a(t) + f . x@®)w (] o(t.sx((s)ds) (1)

where f,Q,,a and [ are appropriate given
functions. Dhage and Bellale [1] investigated this
problem, when w(X)=X and f,Q,v,a,f
satisfy the following conditions.

(A) The functions «, g, 7:R, >R, are

continuousand (t) — o ast — oo.

(A) The function f:R xR—>R s
continuous and there exists a bounded function
¢:R, - R withbound L such that

|f(t,X)— f(t,y)|££(t)|x— y| @)

foranyt € R, andforal x,yeR.
(A) The function F:R, — R, defined by

F)=|f(t,0) is bounded on R, with
Fy = plF 0.
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(B,) The function g:R, xR xR —>R is
continuous and there exist continuous functions
a,b:R, > R, suchthat

gt s, %] < ab(s) @

for t,se R,. Moreover, assume that

li ma(t)J.;b(S) ds=0 @)

t—owo

and K,L <1 where

K, = Supa(t) [ b(s)ds 5)

te]R+

They gave their main result under the above
conditions as follows.

Theorem 1.1. Assume that the hypotheses (A)

through (A,) and (B,) through (B,) hold. Then
the functional integral equation

X =)+ 6@ 9ts X (N)ds ©

has at least one solution in the space BC(R ).

Moreover, solutions of this equation are uniformly
locally attractive.

The aim of this paper is to study the existence of
solutions for Eq.(1) under conditions that are
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weaker than Conditions (B;) and (B,). Tools

used in this paper are the technique of measure of
noncompactness and Darbo fixed point theorem for

condensing operators. In 1930, Kuratowski [2]
introduced the concept of measure of

noncompactness. Later, BanaS and Goebel [3]
generalized this concept axiomatically which is
more convenient in application and will be accepted
in this paper. They also presented applications of
their results (see [4-8]. Subsequently, applications
of the measure of noncompactness and many other
techniques to nonlinear integral equations were
considered by many investigators and some basic
results have been obtained (see [9-19] and
references cited therein). Finaly, we give an
example to validate our main resultsin this work.

2. Preliminaries

In this section, we recall some notations, definitions
and theorems to obtain all the results of this work.
In what follows, let E be a rea Banach space

and X be asubset of E. We denote by X the
closure of X and by co(X) the closed convex

hull of X in E. Also, let B bethe closed ball in
E centered at zero and with radius I and we write
B(X,,r) to denote the closed ball centered at X,
with radius r. Moreover, we symbolize by 1.

and 1. the family of all nonempty bounded

subsets and its subfamily consisting of al relatively
compact subsets of E , respectively.

Definition 2.1. ([3]) A mapping 4 : 9. — 0,0)

is said to be a measure of noncompactnessin E if it
satisfies the following conditions.

(H,) The family Keru={X e M, : u(X)=0
is nonempty and Ker 1z < 1. .

(H,) XY= u(X)<u(Y),

(Ha) u(X) = u(X),

(H,) u(CoX) = u(X),

(He) u(AX + (1= A)Y) < 2u(X)+ (1= A u(Y)
for 1€0,1),

(Hg) 1f (X,) is asequence of closed sets from
M. such that X, X,, (n=>1) and if

n+l =

limns4(X,) =0, then the intersection set
X, = ﬂ::an is nonempty.

The family Ker 2 described in (H,) said to be
the kernel of the measure of noncompactness (.
Observe that the intersection set X from (H)
is a member of the family Keru . In fact, since
(X, )< u(X,) for any n, we infer that
u(X_)=0.Thisyieldsthat X_ e Ker .

In section 2 we will apply the the following
theorem:

Theorem 2.1. (Darbo [4]) Let QO be a nonempty,
bounded, closed, and convex subset of a Banach

space E and let G:Q—>Q be a continuous
mapping. Assume that there exists a constant
k € 0,1) such that

H(G(X)) <ku(X) )

forany X < Q. Then G hasafixed point.

Throughout this paper, BC(R,) is the set of all
real functions defined, bounded and continuous on
R,. Let X be a nonempty, bounded subset of

BC(R,). Forany xe X,T >0 and £ 20, let
= sup o)t 20)

and

o"(x &) =sup{|x(t) - x(s)|:t,s€[O,L] Jt—-g< &}, (8)
o"(X,£) =sup{o*(x.£):xe X},
@ (X) =lime" (X, 2),
@y(X) = limeap (X)
Moreover, for t e R,
X(t) ={x(t): xe X},

diamX (t) = sup{|x(t) - y(t)|: x, y € X},

and

H(X) = @,(X ) +limsupdiamX (t). (12)
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BanaS and Goebel proved that u(X) is a

measure of noncompactness in the sense of the
above accepted definition (for details see [3]).

Now let Q< BC(R,) and F be amap from
Q into itself and consider the equation

x () =F (X (t)). (13)

Definition 1.2. ([7]) Solutions of equation (13)
are locally attractive if there exists aball B(X,,I)
in the space BC(R,) such that for arbitrary
solutions X = X(t) and y=y(t) of equation
(13) belongingto B(Xx,,r) N Q2 we have

lim(x(t) - y(t)) = 0. (14)

tow

When the limit in (14) is uniform with respect to
B(%,,r) M€, solutions of equation (13) are said
to be uniformly locally attractive.

3. Main resultsand Examples

In this section, we are going to study the existence
and uniform local attractivity of solutions of the

integral equation (1).

Theorem 3.1. Let the hypotheses (A)—(A)
hold. If we replace the assumptions (B,) and

(B,) of Theorem 11 by the following
assumptions,

(B,) The function q:R, - R is continuous
and bounded.

( Bz) Suppose that
lim [ |a(t, s x((9) - 9(t, 5 ()| ds=0 (15)

uniformly with respect to X,y € BC(R,) and

K,L <1 where

' A1)
o= s (], gt s x(9)ds). 00
x,yeBCJ(rRJr)

Furthermore, suppose that v R >R is a
continuous function and there exist some positive
constants A, p such that

v () —w(y)|<A|x-y (17)

forany X,ye R .
Then equation (1) has at least one solution in the

space  BC(R,). Also, these solutions are
uniformly locally attractive.

proof: Define the function Q by
Qc(t) = a(t) + £t (@@ (], 9t s x((Nds)  (18)

where Xe E = BC(R, ) . By definition (18) of
Q, forany XeE andte R, wehave

Qv =la]+|f €. Xt@O)]w (], 9.5 x((Nas)
<K +(f (t,x(a@t))~f (,0)

Hf oDl g €5, x ((e))ds)

<K, + (00 |[x(@(®)]+ F,)

R TERCOLS)
<K, +(L[{+F)K, =T (19)
K, +FK,

1- LK,

Hence, Q maps E into E. Moreover, from the

where I = and K, = tSIIf{p|q(t)|.

inequality (19) we conclude that Q(Br) c B: .

Now, we shall show that themap Q: Br — B: is
continuous. To prove this, assume that & >0 and

pick X,yeBr with |[X—y|<&. Then, using

(2), (16),(17) and the triangle inequality, we
get

Q1) - Q0] =t x(@(®) - £t Y[ 50t 5 X (S
H 1@y (] a5 X)) -p(f] gt v SNed)
< (1) x(@(®) - V@)K,

]t y@©) - £40] | OPAY[, ot s x(es

-["tts 9N
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9(tSX(EN] ,
9.5,y ()
9SS, (20)
IR0 it

<Lek, +[L]y @)+ Fla(f

0

<Lek, +[Ly[+Fa

[

On the other hand, using (15), there exists
T > 0 such that

0

Jo" ot s x((9)ds-g(t.s yroNds< () 2D

for any t >T. Now, we have two the following
Cases.
(i) f t>T, thenfrom (20) and (21) , we get

|QX(t) —Qy()| < (K, +Lr + Fy)e.

(i) 1f O< t<T, then, using uniform continuity
of g on[0,T]x0, S ]x—r,r], weobtan

[ ot s.x(/(9)ds g(t. y((9)|ds 0
as &€ > 0, where
B =sup{(t) :te[0,T].

So Q is continuous. In the sequel, we show that
Q satisfies the property (7) of Theorem 2.1. For

this, suppose that X is a nonempty subset of B:
and fix T >0 and & >0 arbitrarily. In addition,

assume that Xe X and t,t,€[0,T] with
|t1—t2| < &. Moreover, without loss of generality,

we can assume that A(t,) < A(t,). Then from

(16),(17),(18) and the triangle inequality, we
get

Qx (t,) -Qx (t,)] <fa(t) -a(t,)]

f (@) || o
—f (t,.x (a(t,))) ‘l/l(.[o g(tlvs'x(ﬂS)))ds)‘

+F Xy Vot s X Nds-p ([ ot X(y(s)))ds)‘
<Jaty) —alt,)| +[| f t, () -  (t,, X(a (b))
|1 (@)~ f G X@ON (] ot s X))

] @) - 16,00+ £ 6.0 f)

-[/"9 5 x0/ N )

_I_

g(t,, s, x(7(s)))ds

<latt) - at,)| +Le (f, &)+ (L) |x(@(t)) - X(a(tz))\]K;
1) )]+ RIA[) ot 5 X0 (oN)ds

~[/"5s x( oA ) @

On the other hand,
1,0t s G Mds- [0t s X0 Nes < [ o, 5 x9)
Bty)
- 9g(t,, S X(7(9)))| ds+ Iﬁ (tlz) |9(t,, s, X((9)))| ds
< B0 (9,6)+G & (B,¢), (23)
where
lat,.s,x)-g(t,.s,y):
o7 (9,€) =supst,t, e[0T .t —t,|< e,
se[0,5 ].x,y e[-r,r]

and

@ (B,&) =supl|B(t) - BL,)|: 4L, [0 T] |t~ t,| <}
Since X was arbitrary, from (8),(9),(22) and

(23), weobtain

@} (QX, &) <] (0,€) +[o] (F,) + Loy (X, 0] (e, £))]K,

HLr + R)A(B 0T (9,6)+ Gl @] (B,5))". (24

where

o' (a,&) =supf|a(t) —alt,)|:t,t, €[0,T].jt,—t,| <&},

o' (X, 0" (a,€)) =sup{|x (t,) - X (t,)|:

t,t, e[0T |, —t,|< & (a,6)},

f(t,x)-f (t,,x)|:

ot sy = splT @) F @) |
tt, e[0T Lt —t,|<ex e-r,r]

: et x,y)-g(t,.x,y)|:

wr (g,&')—SUp '
t,t, e[0T |.Jt,—t,|<ex,y e-r,r]

@, (@,¢) = sup{fa(t,) -a(t.):
t,t, e[0T |, —t,|< &

and
G’ =supf|g(t,s,X)|:t€[0,T],s€[0,5;].xe.[-r,r]}.
Sinceq, f and g are uniformly continuous on the
compact sets [O,T], [O,T]x[-r,r] and
[0,T ][O, B 1 x[-r,r] respectively, we have
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wy (9,€) =0, o (f,e) >0 and

o' (9,6) >0 a &£—0.  Smilaly,
o' (a,€) >0 and @ (B,&) =0, as &£ > 0.
Taking the limit from (24) as € -0 and by
(10) we get

@y (QX) < LK a5 (X). (25)

Letting T — o0 in (25), then using (11), we
obtain

@,(QX) < LK,@,(X). (26)

Now let X,ye X and teR, . Then, using
(2),(16),(17) and thetriangle inequality

Q1) - Qy(0)] =/t XV~ F €. YOy ([} "9t 5 X (N)es)

1Y@y () a5 X ONd) -w () gt s Y )

<[t |[X(@(t) - Y(@(®)] K,]

] 6y~ 10+ L OA|J, ot s X))

[t s (e

< LKdiamX () + /O] ()] + FJA(J, gt x((9N)es

[t sy )

<LK, diamX (a(t))+
g(t,s,x(y(s))ds
-g(t,s,y(»(s))
< LK diamX (a(t))
g(t,s,x(y(s))ds
-g(t,s,y(»(s)

[L [y [+ Fola(”

0

ds)®

(27)
AL +Fola(

0

ds)®.

Since, X,¥ and t were arbitrary in (27), we
obtain
diamQX (t) < LK diamX («(t))
g(t,s,x(y(s)))ds
—-g(t,s,y(»(s))

(28)

HLr + FO]/l(J‘ﬁ(t) ds)”.

0

Thus, taking the limit from (28) and using
(15) , weearn

limsupQX (t) < LK, limsupdiamX (a(t)). (29)

t—>oo t—w

Also, adding (26) and (29), we have

@,(QX ) +limsupdiamQ (X )(t) < LK , (@, (X ) 30)
+limsupdiamX (a(t))).

Now (12) and (30) imply that
£(QX) < LK,4(QX), (3D

So, by applying Theorem 1.2 we conclude that
the operator Q has at least a fixed point and

consequently the integra equation (1) has a
solution in BC(R,). Now, we shal show the

uniform local attractivity of solutions of equation
(1). Todo this, we first consider the ball B, with

K, +FK, )
= ——=. From (19) we have obtained that
1- LK,

Q maps B, intoitself. Take
S={xeBC(R,):|¥ <r,x=Q(x)}.

Define by induction Q,=Co(f(B,)) and
Q,=Co(f (€, ,)) forany N=1. Itiseasy to
see that

ScQ, (32)

for any N> 0. Furthermore, from (31), we have

#(Q,) < (LK3)" () (33)

for any N>1. Theefore, from (33),
u(Q.)—>0 as n—ow Since {Q} is a
decreasing sequence and €2 is a bounded, closed,

convex and nonempty subset in BC(R, ) for any

n>0, then (H,) impliesthat Q = len is
n=.

nonempty and (€2, ) = 0. Thus (12) implies that

limsupdiamX («(t)) = 0. (34)

toow
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On the other hand, Sc Q_ by (32). Hence,
by (12) and (34), the solutions of the equation

(1) are uniformly locally attractive and the proof
is complete.

Corollary 3.1. Theorem 1.1 can be deduced from
Theorem 3.1.

Proof: Set y/(X) = X. Thus i is Lipschitz with
congtant 1. On the other hand, using (3) and (5),
we get

o= sp ([ gt s X))

xeBC(R, )

1 gts x((sN)es

Xe BC(R )

<supa(t) “b(s)ds = K,.

teR

Hence K'2L <1. Moreover, from (3) and (4)
we have

lim|" gt s, X( (9N ds—a(t,s, ()] ds < 2lima), *bis)ds = 0

uniformly with respect to X,y € BC(R,). Now,
according to Theorem 3.1, the equation (6) has

at least one solution in the space BC(R ) .

At the end of this section, we present an example
to show how Theorem 3.1 can be successfully
applied, and is especiadly more general than
Theorem 1.1.

Examples: Let m,n> 2. Moreover, we assume

thata o is a positive constant such that
1

7, e

(3)_ <1. Consider the following generalized
a

quadratic integral equation

x(t) = e + In(L+t2e |x(t)|)arctg(j

for te R, and Xe BC(R, ). Comparing (35)
with (1), we have

m-1 2n

2J§m|n(l+ s2
2(1+t2m)(1+ x2”)

f(t,%) = In(1+ e ), (X) = arctg(x),

a(t,s,x) =

2[m|n(1+s 3 - an (35)
2(1+t2m)(1+ xzn(f s))
o2 ot? o2
:m(1+t2e TN -tPe |y +t2e |y|)
1+t2e |

2 —at
sln(1+ﬂ

1+t2e |
<L(t)|x—Y]

a(t) = Vi, Aty =t*,qt) =€, 7(s) =/s.

Now we verify the assumptions of Theorem 3.1.
Obviousy «,f and y satisfy the assumption

(A) of Theorem 1.1. Also, f is continuous on

R, xR and |f(t,0)| is bounded with

If ., x)-f (t,y)|= ln(1+tze_m2|X(t)|)
“In(1+t%e X (t)))
(1+t2 -at? X))

(1+ {2t )

for any teR, and X yeR where

2
((t) =t’e¢“". Moreover, we can easly verify
1
e
that L = maxf(t) = ——. These mean that the
a

+

Assumptions (A,) and (A,) are satisfied. It is

easy to see that Assumption (B, ) is satisfied for
g. Since

n

m-2
J3min(l+s 2
(L+t2™)(1+ x*")

X

mf S (3p)

g(t,s, X) = 2(1+t2m)

and
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m-2 m-2
2|J3min(1+s 2 |x") 2 3ms 2 |x"
) 7 s < [
o | (L+t™™)(1+x") ‘ 0 (1+t2)(1+x*")
_2Jam" X

m (1+t>") (1+x°")
\/étm

Thusby (36) and (37) we obtain

2 Msm—l
lim t,s,X)|ds= I|m
t—mj |g( )| o 2(1+ tzm)
\/§t2m

m 2m
== 2(1+1t°™)

3

5
This shows that assumption (B,) of Theorem

1.1 does not hold. Therefore, Theorem 1.1 is
inapplicable. But, using (36) , we have

n

2

k

X

m2

\/§mln(1+s 2 ) m\/ésm‘1 ds<
+ S

(L+™M)(L+ X" 2(1+t2™)

NEW +jf2 my/3s™

< ds
(L+t2™)  Jo 2(1+t7™)

It follows that

2
j; |g(t,s,¥)|ds< /3 (39)

for any teR, and uniformly with respect to
X, Y € R. On the other hand, from (37) we get

n

\/§mln(l+5m772 )

X

12 '
jo ‘g(t,S,X)*g(txva)‘dszj.o ®

n

\/§m|n(1+smT?2 vy
@ty D)

m-2 m-2
2 ~fams Z J3ms 2 y
< +
-[0 (1+t2m)(1+ x*") A+ t2M)(1+ y*")

<2\ 3——

(1+ t2m)

n n

X

)ds

uniformly with respect to X,yeR for any
teR, and X,y € R. Thisimpliesthat

2
!LTJ: lg(t,s,x)—g(t,s,y)|ds=0. (39)

Also, using (38), it is easy to check that

f X |1y(t)| = . Therefore
: A(t) e’
K,L = sup{arctg Uo ga(t,s, X(y(S)))dS’] —
te]R+ o
_1
<€ (40)

Furthermore, i is Lipshitz with constant 1.

Hence, using (39) and (40) , Assumption (B,)
is satisfied. Then, we conclude that al of the
Assumptions of Theorem 3.1 are satisfied. Hence
the equation (35) has at least one solution and all
the solutions are uniformly locally attractive.
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