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Abstract

In this paper, by definition of exponential map of the Lie groups the concept of exponential map of generalized
Lie groups is introduced. This has a powerful generalization to generalized Lie groups which takes each line
through the origin to an order product of some one-parameter subgroup. We show that the exponential map is a
C*- map. Also, we prove some important properties of the exponential map for generalized Lie groups. Under the
identification, it is shown that the derivative of the exponential map is the identity map. One of the most powerful
applications of these exponential maps is to define generalized adjoint representation of a top space, so we show
that this representation isa € *- map. Finally, invariant forms are introduced on a generalized Lie group. We prove
that every left invariant k-form are introduced on a generalized Lie group T with the finite number of identity
elementsis C*. At the end of this paper, for compact connected generalized Lie group T with the finite number of
identity elements and dimension n, we show that every left invariant n-form on T isright invariant n-form.
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1. Introduction

Certain manifolds such as the torus T2 also have in
multiplication structure a generalized group
structure [1, 2], moreover the generalized group
operations are C*. A manifold such as thisis called
generalized Lie group or top space [3-5]. This paper
is a compendium of important structures of top
space. Top spaces are a particularly important class
of manifolds.

In this generalized setting, severa authors ([2])
studied various aspects and concepts of generalized
groups and top spaces. Also, some authors consider
another useful generaization of Lie groups.
Gheorghe considered the main structures of Lie
groupoid, and encountered the important instruction
between groupoid and geometric theory [6, 7]. Note
that this generalization is different structure from
the Lie groupoid introduced by Haefliger [8] and
has been studied by Gheorghe [6, 7].

The concept of top space is defined by a set of
axioms. In the axioms, the (only) difference liesin
comparison with notorious axioms of an ordinary
Lie group [2], in the definition of unit element.
Here, contrary to the situation in Lie groups [9], the
unit element is not necessarily unique. Rather, it is
in general, element-dependent. So, for each element
t in top space T there exists unique e(t) in T such
that te(t) = e(t)t = t plusthe requirement that the
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map e:T—>T defined by tw—e(t) be
homomorphism (Lie group is a specia case of atop
space, where unit element is unique), but there are
top spaces which are not Lie groups [3]. So, top
spaces are beautiful important and useful
manifolds, because they have one foot in each of
the two great divisions of mathematics, algebra and
geometry. Their algebraic properties are derived
from the generalized group axioms. Ther
geometric  properties are derived from the
identification of generalized group operations with
points in a topological space. The rigidity of their
structure comes from the continuity requirements of
the generalized group inversion map.

In section 2 of this paper we introduce the
exponential map of top spaces. This has a powerful
generalization to top spaces which takes each line
through the origin to an order product of some one-
parameter subgroup. The derivative of the
exponential map is explored. One of the most
powerful applications of these exponential maps is
shown i.e. generalized adjoint representation is a
smooth map.

Section three is devoted to studying invariant
forms on a top space. We show that the set of all
left invariant k-forms on top space T is
isomorphism into the space of al aternating k-
tensors on the Lie algebra T of top space T [5], by
this we give an upper bound for the set of al left
invariant k-forms on T. Finally, for each compact
connected top space T of dimension n, we consider
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the relation between left invariant n-formson T and
right invariant n-formsonT.
Now, we recall the definition of top space and
then present a characterization of some top spaces.
A top space is a nonempty d-dimensional
Hausdorff, second countable manifold T admitting
smooth operations

m:TXT->T and i:T->T
m(ty, ty) = tit, it)y=1t""

which satisfy the following conditions:
a) (ts)r = t(sr),fordl t,s,reT.
b) For each t € T there exists a unique e(t) in T
such that te(t) = e(t)t = t.
¢) For each t € T there exists the inverse element
s € T such that ts = st = e(t).
and it holds
d) e(t,t,) = e(ty)e(ty), foradl t,,t, €T.

It is easy to show the inverse element s is unique
and by t~! we mean the inverse of t.

Let T and S betop spaces, aC®-map f:T = S is
called top space homomorphism, if

f(t.t) = f(&)f (L2),

foral t,,t, € T.[10]
Note that each Lie group is top space, but there
are top spaces which are not Lie groups.

Example 1. The Euclidean subspace R* =R — o
with the product ab = a|b| is a top space with the
identity elementse(T) = {+1,—1}.

Example 2. The n-dimensional Euclidean space R™
with the product:

((al, s Ap), (Bq, o, bn))
_ (na1+2bi na, + % b;

) wrny

n n

isatop space which isnot aLie group.
Note that in this paper, by the following symbol
we mean digoint union.

Theorem 3. [11] If T is a top space with the finite
number of identity elements, then

7= Je o)

teT

where (e 1(e(t))) s are diffeomorphic Lie groups
and are defined by:

(e—l(e(t))) ={s eT:e(s) =e(t)}

foralseT.

In the paper [11], some low dimensional top
spaces are characterized. Also, in the paper [12],
the properties of top spaces in the special cases are
considered.

2. Exponential Map on Top Spaces

Let T be atop space, T alLieagebraof T, [10]. Let
Y € v and yto¥ betheintegral curve of Y starting at
the identity element e(t,) € e(T), where e(T)
show the set of al identity elements of T. Then t,-
exponential map exp,:t - T is the map which
assignsy‘’(1) to Y, wewrite exp, (¥) = " (1).

Lemma 4. Let T be atop space. Then yt () (1) =
yio¥ (r), where y") and yt¥ are the integral
curves of rY and Y respectively, starting at the
identity element e(t,), where t, €T, r € R and
Yer.

Proof: Obviously

yor(0) =y (0) = e(to)
also we have:

d d
g lr=o(¥*¥(ar)) = a (E (erY)> (0)
= aY(e(tO)).

Since y(@)(y)is the integral curve of vector
field aY starting at the identity element e(t,), then

d
o () = a¥ (e(to)):

By existence and uniqueness theorem of the
solution of the differential equation for manifolds,
we deduce

yto¥ (ar) =y (r).

Now, by replacing "a" by "r" we have
yi¥(ar) =yt (q). Le¢e a=1, then
yiM(1) = yoor ().

Theorem 5. Let T; and T, be top spaces with the
finite number of identity elements. Let ¢:T; - T,
be a top space homomorphism and e~(e(t,)),
e *(e(p(ty))) be simply connected topological
subspace of T; and T,, respectively. Then
€XPy(t,)0dP = poexpy,.

Proof: At first, by Theorem 3, we know that for top
space T we have:
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T = U (e 1(e(®))
e(t)eT
also, e‘l(e(t))' s are diffeomorphic Lie groups for
everyt €T.
Lety:R - T; and,: R = T, are defined by:

1) = ¢ (exp,, (1))

and
P 2(5) = expy(ty) (sdp(Y)),

respectively, whereY € t,(the Lie algebraof T;).
By the well known chain rule theorem we have:

d; (1) = d(poexpe,)(rY)|r=1v
(dpodexpy,) ()l =1
=do(Y).

Since e~ (e(t,)) isasimply connected Lie group
and Yq|,=1 = Py|,=1, then by existence and
uniqueness of solution of differential equation for
manifolds we have:

eXPy(t,)0dP = poexpy,.

Theorem 6. In a neighborhood of 0in the Lie
algebrat, the map exp,, is adiffeomorphism.

Proof: By the inverse function theorem on
manifolds it is enough to show that dexp;, is a

surjective map at 0. We have dexp,: T = T,ty)»
where T, () is the tangent space of T at e(t,). Let
S € Te(ry), then there is a left invariant vector field
Y € T suchthat Y(e(ty)) = s.

Now, let yto¥ be the integral curve of vector field
Y, then

dyo" (r)
dr

=Y(r).
Also,

expy, (rY) = ytr (1),

wherer € R.
Since T isavector spaceand Y € . ThenrY € 7
and we have:

dexp, (rY)ly=0 = Ay (N)lr=0 = Y(e(ty)) = s.

Therefore dexp,, is asurjective map.

Now, we define a powerful map Exp on the Lie
algebrat of atop spaceT.

Definition 7. Let T be a top space with the order
finite number of identity elements e(t,), ..., e(t,),
dso ss"=s"s, for dl s ee(e(t;)) and
s’ €el (e(tj)), where i,j € {1,..,n} and i # j.
The map Exp is defined by order product
Exp(Y) = y©Y (1) ...ytnY (1), where y4¥ (1) isthe
integral curve of Y starting at the identity element
e(t), fordli=1,..,n.

Note that, if T is a Lie group, then the definition
of exponential map on top spaces agrees to the
definition of exponential map on Lie groups.

Theorem 8. Let T be a top space with the order
finite number of identity elements e(t,), ..., e(t,).
Then

Exp(rY) = yu¥(r) ..y¥ (r).

Proof: By Lemma 4, we know that yti() (1) =
y'¥(r1), foreveryi € {1,..,n}andr € R. Then

Exp(rY) =y (1) ..y (1)
=yY(r) ..y ().

Theorem 9. For top space T with the Lie algebrar,
the exponential map Exp isa C*- map.

Proof: We know that the exp,, isa C*- map, for all
ie{l,..,n}. Since T is a top space, then the
product map expy, ...exp,, isaC”- map.

Theorem 10. Let T be a top space with the order
finite number of identity elements e(t;), ..., e(t,)
and T bethe Lie algebraof T. Then

a) Exp(—1Y) = (Exp(rY))~1.

b) dExp: Ty = Te(t,..t,) 1S the identity map, under
the canonical identifications of both 7, with T and
Te(t, ..ty With the Lie algebra of the Lie group
e (e(ty .. t)).

Wherer e RandY € 1.

Proof: For part (a), since T is atop space with the
finite number of identity elements, let e(T) =
{e(ty), ...,e(t,)} be an order set of al identities
elements. Also

T = U (e 1(e(®))

e(t)eT

we know that e~*(e(t)) is Lie group with the
identity element e(t), then

exp(—rY) = (exp(rY))~1.
Then

Exp(—1Y) = expy, (—7Y) ...exp,, (—7Y)
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= (expe, (YD) ™" ... (expy,, (rY)) ™ (Exp(rY)) ™.

Part (b) follows immediately from the Lie group
theory.

Let T be a top space with the finite number of
identity elements and t be its Lie algebra. Let
Y et and H(e(t),r) = exp.(Y), by theorems in
differentiadl  equations on the dependence of
solutions on initial conditions, for every t € T there
is a positive number ¢ and a neighborhood V of
e(t) such that H is defined and C*- map on
(V n e‘l(e(t))) X (—¢, £). Since the real numbers
used as the second variable of H are parameter
value along a curve, by unigueness on initia
condition in differential equation, they satisfy an
additive property, i.e. if vEV, 1r,n,n +1r, €
(—¢,€), then HH(v,1y),15) = H(v, 11 + 13,). Also,
if we are given a C*- map having domain of the
sametype as H and satisfying the additive property,
we get a vector field having H, for this let &, be
defined by &,(r) = (v,r). Then a v the value of
the vector field isY (v) = d(Ho &,)(0).

So, we have the following theorem:

Theorem 11. Let T be a top space with the order
finite number of identity elements e(ty), ..., e(t,),
Y be a left invariant vector field on T and
Exp,,(Y)(r) = y%¥(r), wherei=1,..,n. Then
there is neighborhood V' of e(t;) and open interval
(¢ e)such that Exp,, (Y)(r) is a C*- map,
wheret € (V n e‘l(e(ti))), r € (—¢¢) and
i=1,..,n.

The exponential map on top spacesis also natural
in the following sense:

Theorem 12. Given any two top spaces T and S,
for every top space homomorphism f:T — S that
preserves ordering of identities, the following
diagram commutes:

/

T —» S

d
T ——» S

where 7 is the Lie algebra of T and s is the Lie
algebraof S.

Proof: It is enough to show that foExpr(Y) =
Expsodf (Y), whereY € 7.

foExpr(Y) = f(y2¥ (1) ..y™¥ (1))
= fyY () ... fF(y™' (D).

Since e *(e(t;)) is Lie group, for every i=
1,...,n, then

fra" ) . (" (D)
= (y"Yh odfly) .. (y Y'Y (Dodf ;)
= Expsodf|,(Y).

Then foExpr(Y) = Expsodf (Y).

Now, by a representation as a map of top space T
into a Lie algebra of T we show that generalized
representation is a C*- map. Let T be a top space
with  the finite number of  identities
elements e(t,),...,e(t,), for every t, €T we
have a top space homomorphism A.:T -
e '(e(ty)) ST defined by A (t) = tot(ty) ™
Moreover, the map t, — A, is a homomorphism.
The map: T — GL(z ) defined by GAD(t,) = dA,,
is called generalized adjoint representation of T.

Theorem 13. GAD is a C*-representation of T into
Liealgebra 7 of T.

Proof: GAD is evidently a top space
homomorphism, so that it suffices to show that it is
C*, and in fact, to show that it is C* in canonica
coordinate neighborhood. First, we note that for a
fixed point t, €T the map t, — Agis C”. In
fact, it is the composition of maps involving top
space operations which are

t— ((te) ™1 t, L) = (to) ~'tty.

Now, by Theorem 11, for every y in canonical
coordinate neighborhood we have y = Exp;(X),
and by Theorem 12 we have:

Ay, ) = Ay, (ExpT(X))
= Expr(d(to)(X))
= Exp;(GAD(ty)X).

If we choose abasis X, ..., X; of 7, then GAD (x)
isgiven in terms of matrix (b;;), where

Now, for y=exp (tX;) we get A, (y) ae
th;j(x), i =1,...,d being defined for ¢ sufficiently
small. Since A4, is C” in x, this means that b;;(x)
isC”inxforal i,j thatis, GAD(x) isC".

3. Invariant Formson Top Spaces

In this section we introduce left and right invariant
differential forms on top space. Just as there are left
invariant vector fields on atop space T [5], so there
are also left invariant differential forms. For t € T,
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let [,:T — T be left multiplication by t. A k-form
won T issad to be left invariant if (1,)*(w) = w,
for adl teT. This means for al ¢tt, €T,
(1)* (wer,) = @, where (I,)* show the dual of left
multiplication I,. Then, we have:

Theorem 14. Let T be a top space with the finite
number of identity elementse(t,), ..., e(t,). Thena
left invariant k-form is uniquely determined by its
values at the identity elements e(t,), ..., e(t,,).

Proof: It is clear that (I;-1)*(weq)) = ws, Where
e(t) isthe identity element of s, i.e. s € e"*(e(t)).
Since, by Theorem 3, the top space T can be written
by digoint union of e(e(t)), where i€
{1, ...,n}, the proof is completed.

Theorem 15. Let T be a top space with the finite
number of identity elements . Then every left
invariant k-form w on top spaceT isC™.

Proof: It would be evident that e~*(e(t)) isalie
group, for al t € T. Sincee~*(e(t)) isaLie group,
then w is a C* k-form one~*(e(t)), by the same
process of the previous theorem w isC™.

Similarly, a k-form w on top space T is said to be
right invariant if (r;)*(w) = w, for al t € T, where
r.: T+ T is defined by . (t,) = tt,, for all t, €
T.

Corollary 16. Every right invariant k-form on top
space T, with the finite number of identity
elements, isC”.

Note that in the following theorem by 2% (T)" we
mean the set of dl left invariant k-formon T.

Theorem 17. Let 7 be the Lie algebra of top space
T with the finite number of identity elements. Let
A¥(7*) be the space of al alternating k-tensors on
the Lie algebra t. Then Q% (T)T is isomorphic into
AE(T).

Proof: Suppose ¢: 2%(T)T - A*¥(t*) isdefined by
P(w) = we(r), Wheret € T. Since
P+ )= (WA®)er) = Wery AW ooy,
where A denote the wedge product, then ¢ is a
linear map.

NOW, let ¢)(a)) = (]5((1),), then (J)e(t) = (J)’e(t-).
Then for every t, € e~*(e(t)), we have:

()" (@ery) = (L) (0o,

thusw, = W'y, .
Lett, € T—e (e(®), then (1) (Ir,)"(wy,) =
()" (Ue)) (0 gy), then Wy ¢r, = ¢ phe, AN SO

We(t toty) = w,e(tltotl)v since e(titoty) = e(ty),
then wey) = ®eq,y. ThUs ws =w’s, where
s € e"Y(e(t,)). By the same process we can show
that w, = w’,, for al r € T. Therefore w = w’, on
T.

Then ¢ is an injective map, and this completes
the proof of Theorem 17.

So, for a top space T with the finite number of
identity elements we have:

Corollary 18. dimQ*(T)T < dim A*(t¥).

Lemma 19. Let T be a top space of dimension n,
with the finite number of identity elements and the
Lie algebrat. Then for each t, € T, the differential
a the identity e(t,) of the map
Ay = lijory -1:T — T is a linear transformation
dAtO:Te(to) — Te(to)- Alﬂ), the map GAD:T -
GL(Te(t,)) € GL(7) defined by GAD(t,) = dA,, is
atop space homomorphism.

Proof: By chain rule theorem we have dA, =
dlg o dry -1, and then dA, is a linear map. Since
the Lie algebra = of T is a vector space, and dl
and dr, -1 are injective and surjective linear
transformation on Lie group e~*(e(t,)), then dA4,,
is an isomorphism of vector spaces. Now, let
(U, y%,...,y™) be achart about e(t,) in T. Relative
to this chart, the map dA,, at e(t,) is represented
by the Jacobian matrix. Since A, (t) = tott,"" isa
C”- map, all entires of Jacobian matrix are C* and
then GAD(t,) isaC>®- map of t,.

Theorem 20. Suppose T is a compact connected
top space of dimension n, with a finite number of
identity elements. Then every left invariant n -form
on T isright invariant n -form.

Proof: Let w be aleft invariant n -form on T. For
any ty €T, it is easy to show that (1;))" w is dso
left invariant. Since T is a manifold of dimension n,
then dimQ*(T)" = dimA*(7*) =1, () w =
g(ty)w, for some nonzero real constant g(t,)
depending on t,,.

Now, we show tha ¢g:T->R-0 is a
homomorphism of top space T into Lie group
R — 0 with the the product of nonzero real numbers
(Note that each Lie group istop space).

g isahomomorphism because:

g(te)g(ty)w = ()" () w = g(toty)w, then
g(to)g(to)w = g(tety)w, since w is an -form
and dimA¥( %) = 1, then g(ty)g(ty) = g(toto).

To show that g isa C*- map, we have:

It We(rg) = ((T)" @eeg) = (Tey)™ Weey)
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= (Tto)* (lto‘l)*(we(to))'

thus g(t,) is induced by map dA,:T — T, then
we have g(t,) = det (dA.,(to)), since dA,;, isa
C*- map of t, (Lemma 19), then g isC”.
As the continuous image of a compact connected
set T, the set g(T) € R — 0 is compact connected,
andthen g(T) = 1.

Hence (1,,)"w = w, for dl t, € T, and the proof
is completed.
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