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Abstract 

In this work we deal with the question: how can one improve the approximation level for some nonlinear integral 
equations?  Good candidates for this aim are semi orthogonal B-spline scaling functions and their duals. Although 
there are different works in this area, only B-spline of degree at most 2 are used for this approximation. Here we 
compute B-spline scaling functions of degree 4 and their duals, then we will show that, by using them, one can 
have better approximation results for the solution of integral equations in comparison with less degrees or other 
kinds of scaling functions. Some numerical examples show their attractiveness and usefulness. 
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1. Introduction 

The theory and application of integral equation is 
an important subject in many areas of engineering, 
signal processing, physics and applied mathematics. 
One can also consider them as a reformulation of 
other mathematical problems such as partial and 
ordinary differential equations, which are of interest 
to solve. In this paper we try to solve a large class 
of these equations called Fredholm integral 
equations. 

Although some these equations are solved 
analytically, the rest are solved numerically. 
Several numerical methods for approximating the 
solution of integral equations are known. Some of 
them for Fredholm-Hammerstein integral equations 
are: variation method, collocation-type method and 
iterated collocation method [1]. Some of these 
methods transform a given integral equation into a 
system of nonlinear equations, while others like 
applying orthonormal bases, reduce them to a linear 
system of algebraic equations [2, 3, 4]. 

On the other hand, wavelets theory is a relatively 
new and emerging area in mathematical research 
which is used in a width range of applications such as 
signal processing, time-frequency analysis and 
segmentation. Also, wavelets as orthonormal bases 
are good candidates for providing fast algorithms in 
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numerical aspects in approximating, because of 
their vanishing moment and small supports which 
lead to a sparse matrix. 

In this work we apply compactly supported semi 
orthogonal B-spline father wavelets, specially 
constructed for the bounded interval [0, 1] to solve 
the second kind of linear 

Fredholm integral equations of the form 
 

 
1

0

,10,)(),()()( xdttytxkxfxy                 (1) 

 
where f and k are given continuous functions and y 
is an unknown function to be determined. 

It is known that semi orthogonal wavelets are best 
suited for integral equation applications than 
orthogonal ones [5]. Semi orthogonal compactly 
supported B-spline wavelets have interesting 
properties such as, in a bounded interval, they 
behave better and easier than other wavelets in 
boundary conditions, and they have close-form 
expressions. Based on our method, (1) will be 
reduced to a set of algebraic equations by 
expanding y in terms of pantic B-spline scaling 
functions, with unknown coefficients. These 
coefficients will then be determined from the 
properties of the desired B-splines. The method is 
computationally attractive and applications are 
described through illustrative examples. 

This paper is organized as follows: in section 2 
we present pantic B-spline functions and some of 
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their properties which will guide us to find their 
dual. In section 3, the method which helps finding 
algebraic equations corresponding to the integral 
equation is described. In section 4 we give our 
numerical computations and demonstrate the 
accuracy of this method and functions by 
considering numerical examples. 

2. Pantic B-spline scaling functions supported in 
[0, 1] 

  When we work with semi orthogonal B-spline 
scaling functions on the entire real line, we should 
notice that they may be outside the domain of 
problem. In this article, to avoid this matter, 
construction of compactly supported B-spline 
functions will be on the interval [0, 1]. Also, to 
ensure that there exist at least one complete inner 
scaling function, the condition 2௃ ൒ ݊	must full fill 
for B-spline scaling functions of order n. Here we 
use B-spline order 5 (degree 4), so the pantic B-
spline of the lowest level, which has to be integer, 
is  ܬ ൌ 3. This contains all octave levels to  ܬ ൌ 3. 
B-spline functions of order n can be determined by 

formula ܤ௡ 	ൌ ௡ିଵܤ	 כ ଵ where ]1,0[1ܤ	 )( xB  

and * denotes the convolution of functions. The two 
scale relation ߮௝௞ሺݔሻ ൌ ߮ሺ2௝ݔ െ ݇ሻ describes all 
scaling B-spline functions, and characterization of a 
function with these scaling functions is well known, 
[6]. Now we introduce the pantic B-spline functions 
which are computed from characteristic function 
and the convolution mentioned above, and also 
applying boundary conditions:  
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So the corresponding scaling function is: 
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otherwise they are zero. Their left and right-hand 
side boundary conditions are given. In the 

following formulas, for convenience, we have used 
the Greek numbers I, II, III, IV, V that were 

introduced above. Note that  ݔ௝ denotes xj2 . 
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3. Algebraic equations corresponding with an 
integral equation 

Considering pantic B-spline scaling functions with 
compact support [0, 1], as an 

Semi orthonormal set, the function f(x) defined 
over [0, 1] can be presented as 
 

,)(
12

4
LLkk

k

Aaxf
L

 




                                (2) 

 
where 
 

]...,,,[
1234  LaaaA                                     (3) 

 
and 
 

T

LLLL L ]...,,,[
12,3,4,    ,                    (4) 

 



 
 
 
49                     IJST (2012) A1: 47-50 

 

where L is an arbitrary integer such that ܮ ൒  We .ܬ	

show the dual of L  with the matrix L~ , so 
 

T

LLLL L ]
~

...,,
~

,
~

[
~

12,3,4,   . 

 

If kL,

~  are the dual functions, then from semi 

orthogonality condition 
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1
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LL                                         (5) 

 
we have 
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Let 
 

dxP T
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where 
1

0

)( dxP T
LjLiijL   is the ij-th entry of 

matrix LP . From (5) and (7) we have 
 

LLL P  1)(
~

, 
 
which is used for finding dual functions. Now we 
are ready to find the desired algebraic equations. 
Considering Fredholm integral equation (1), first 
we expand y with scaling functions, i.e. 
 

),()( xAxy Ly                                              (8) 
 
where L  is given in (4) and ܣ௬ is a 1 × 2௅ାଵ 

matrix of unknown coefficients, similar to A. Also, 
we describe f(x) and k(x, t) by B-spline dual 
functions: 
 

f L L Lf (x) A , k(x, t) (t) (x)      
,           (9) 
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By substituting (8) and (9) we get 
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So by applying all these equations in (1), the 
corresponding integral equation will transform to 
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Now, we multiply )(
~

xL  by this equation and 

integrate with respect to x, so 
 

y L y fA P A A   , 
 
or 
 

1)(  Lfy PAA . 
 

The last equation provides desired algebraic 

equations for solving ).()( xAxy Ly  

4. Examples and numerical results 

In this section, using the above method we 
approximate the solution of Fredholm integral 
equation, numerically. First, set L = 3. By (7), we 
have the following matrix: 
 

3

0.000 0.0004 0.0005 0.0001 0.0000 0 0 0 0 0 0 0

0.0004 0.0079 0.0152 0.0045 0.0002 0.0000 0 0 0 0 0 0

0.0005 0.0152 0.0459 0.0300 0.0050 0.0002 0.0000 0 0 0 0 0

0.0001 0.0045 0.0300 0.0538 0.0304 0.0050 0.0002 0.0000 0 0 0 0

0.0000 0.0002 0.0050 0.

P 

0304 0.0538 0.0304 0.0050 0.0002 0.0000 0 0 0

0 0.0000 0.0002 0.0050 0.0304 0.0538 0.0304 0.0050 0.0002 0.0000 0 0

0 0 0.0000 0.0002 0.0050 0.0304 0.0538 0.0304 0.0050 0.0002 0.0000 0

0 0 0 0.0000 0.0002 0.0050 0.0304 0.0538 0.0304 0.0050 0.0002 0.0000

0 0 0 0 0.0000 0.0002 0.0050 0.0304 0.0538 0.0300 0.0045 0.0001

0 0 0 0 0 0.0000 0.0002 0.0050 0.0300 0.0459 0.0152 0.0005

0 0 0 0 0 0 0.0000 0.0002 0.0045 0.0152 0.0079 0.0004

0 0 0 0 0 0 0 0.0000 0.0001 0.0005 0.0004 0.0000


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From (3) and (10), we compute fA  and  , so 

we have Ay . Finally, ).()( xAxy Ly  

Numerical results are computed for some integral 
equations via the following examples and absolute 
errors at different points with L=3, 4 given in 
Table1. 

One can see better results in comparison with 
what is presented in [2]. 
 

Table1. Numerical results 
 

x Ex.1, L=3 Ex.1, L=4 Ex.2, L=3 Ex.2, L=4 

0.0 
0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 
1.0 

0.113×10−15 
0.113×10−15 
0.091×10−15 
0.101×10−15 
0.149×10−15 
0.231×10−15 
0.233×10−15 
0.400×10−15 
0.732×10−15 
1.732×10−15 
6.617×10−15 

0.1475×10−17 
0.1585×10−17 
0.3162×10−17 
0.2131×10−17 
0.2346×10−17 
0.0072×10−17 
0.0736×10−17 
0.3166×10−17 
0.2108×10−17 
0.1354×10−17 
0.0289×10−17 

0.0022×10−8 
0.0022×10−8 
0.0015×10−8 
0.0020×10−8 
0.0025×10−8 
0.0044×10−8 
0.0045×10−8 
0.0070×10−8 
0.0137×10−8 
0.0312×10−8 
0.1213×10−8 

000.0073×10−9 
00.00870×10−9 
000.0131×10−9 
0.003615×10−9 
0.001770×10−9 
00.01821×10−9 
00.02212×10−9 
00.05097×10−9 
00.01287×10−9 
0000.188×10−9 
0000.245×10−9 

 
Example 4.1. In this example let the integral 
equation be 
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with exact solution xexy 2)(  . The 

corresponding errors are given in Table1. 
 
Example 4.2. Consider the equation 
 

1x 1
x 2t

0

e 1
y(x) e e y(t)dt, 0 t 1,

x 1

 
    

   

 

with exact solution xexy )( . Errors found with 

our method can be seen in the last two columns of 
the Table 1. 
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