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Abstract 

The purpose of this study is to implement a new modification of the variational iteration method (H-S-VIM), 
which is a combination of spectral method and variational iteration method for heat transfer problems with high 
nonlinearity order. The merit of this method is that it does not require the solution of any linear or nonlinear 
system of equations unlike spectral method. Furthermore the proposed method is easy to implement and 
computationally very attractive. Here, H-S-VIM is used to solve an unsteady nonlinear convective-radiative 
equation containing two small parameters, ߝଵ and ߝଶ. It is observed that H-S-VIM may be implemented on other 
strongly nonlinear models of physical nature. 
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1. Introduction 

Nonlinear phenomena in real world, that appear in 
many applications in scientific fields, such as fluid 
dynamics, solid state physics, electricity and 
magnetism, geophysics, plasma physics, kinetic 
theory of gases, quantum mechanics, mathematical 
economics, can be modeled by nonlinear 
differential equations [1-3]. Except in a limited 
number of these problems, we have difficulty in 
finding their exact analytical solutions. 
Developing of new semi-analytical and numerical 
methods for approximation of the solutions of 
strongly nonlinear differential equations is an 
interesting research area of many engineers and 
mathematicians. 

In recent years, such techniques like Adomian 
decomposition method (ADM) [4], the variational 
iteration method (VIM) [5, 6], the homotopy 
perturbation method (HPM) [7, 8], homotopy 
analysis methds (HAM) [9, 10] and the tanh 
method [11, 12] have drawn great attention from 
scientists and engineers. 

The variational iteration method (VIM) is 
powerful in investigating approximate or analytical 
solutions of nonlinear ordinary and partial 
differential equations. This method is proposed by 
the Chinese mathematician He [5, 13] as a 
modification of a general Lagrange multiplier  
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method proposed by Inokuti et al. in 1978 [14]. The 
main concepts in VIM, such as general Lagrange 
multiplier, restrictive variation, correction 
functional, are explained heuristically. Using the 
VIM we can find the exact solution of the given 
problem. The VIM has played an important role in 
recent researches for solving various kinds of 
problems. In this method the linear and nonlinear 
structures are handled in a similar manner without 
any need for restrictive assumptions. 

The method is used successfully in several well-
known problems such as delay differential 
equations [15], autonomous ordinary differential 
systems [16], Burger’s and coupled Burger’s 
equations [17], integro-differential equations [18], 
Helmholtz equations [19] and many other problems 
[20-27]. The convergence of the method is 
systematically discussed by Tatari and Dehghan 
[24]. Comparison of the method with the Adomian 
method was made by many authors via illustrative 
examples. Wazwaz in particular, gave a complete 
comparison between the two methods [26], 
revealing the variational iteration method has many 
merits over the Adomian method. It can completely 
overcome the difficulty arising in the calculation of 
the Adomian polynomial. Though the variational 
iteration method leads to fast convergent solutions, 
unnecessary calculation arises in the solution 
procedure. 

In order to accelerate the convergent rate, various 
modifications have been suggested, for example, 
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variational iteration-Padé method [28], variational 
iteration-Adomian method [29], variational 
iteration-differential transform method [30]. Abassy 
et al. suggested another effective modification [31]. 
Heydari et al. in [32], presented an efficient 
modification of the variational iteration method for 
solving boundary value problems using the 
Chebyshev polynomials. 

In this paper a new modification of variational 
iteration method is proposed to find analytic 
approximate solution of heat transfer problems with 
high nonlinearity order [33]. This method is a 
combination of spectral method and variational 
iteration method, namely, hybrid spectral-
variational iteration method (H-S-VIM). 

Recently many analytical methods have been 
used to solve nonlinear equations arising in heat 
transfer. Ganji [34] used the homotopy perturbation 
method (HPM) to nonlinear equations arising in 
heat transfer. Tari et al. [35] obtained an 
approximate analytical solution of the nonlinear 
equations arising in heat transfer by usin VIM. 
Abbasbandy [36, 37] applied homotopy analysis 
method (HAM) to solve nonlinear equation arising 
in heat transfer and shown that the solutions 
obtained by HPM [34] and perturbation method are 
only special cases of the HAM solution. Marinca et 
al. [38] use optimal homotopy analysis method 
(OHAM) for solving nonlinear equations arising in 
heat transfer. Yaghoobi et al. in [39], applied 
differential transformation method (DTM) to 
nonlinear equations arising in heat transfer. 

The organization of this paper is as follows. The 
spectral method and variational iteration method 
(VIM) are introduced in Section 2 and 3, 
respectively. Some necessary definitions and 
mathematical preliminaries of the Chebysheve 
polynomials are introduced in Section 4. In Section 
5, the hybrid spectral-variational iteration method 
(H-S-VIM) is presented. In Section 6, VIM and H-
S-VIM are applied on nonlinear equations arising in 
heat transfer and comparisons between the VIM, 
HPM, HAM, DTM, H-S-VIM and the exact 
solution are presented. Section 7 ends this work 
with a brief conclusion. 

2. spectral method 

Spectral methods, in the context of numerical 
schemes for differential equations, belong to the 
family of weighted residual methods (WRMs), 
which are traditionally regarded as the foundation 
of many numerical methods such as finite element, 
spectral, finite volume and boundary element [40]. 

The base of spectral methods to solve differential 
equations is to expand the solution function as a 
finite series of very smooth basis function, as given  
 

uMሺxሻ ൌ ∑ 	M
୧ୀ଴ u୧Ԅ୧ሺxሻ,                                         (1) 

 
in which, the best choice of Ԅ୧ሺxሻ are the 
eigenfunctions of a singular Sturm-Liouville 
problem, for example, Chebyshev or Legendre 
polynomials. If the function uሺxሻ belongs to 
Cஶሾa, bሿ, the produced error of approximation (1), 
when M tends to infinity, approaches to zero with 
exponential rate [41]. This phenomenon is usually 
referred to as spectral accuracy [42]. 

 
Remark 2.1. In the spectral methods for solving a 
differential equation, the problem of obtaining 
approximate solution by solving a system of 
algebraic equations is equivalent. Solving system of 
algebraic equations in general is not easy. This 
limitation is more apparent when M is a large 
number.  

3. Variational iteration method (VIM) 

To illustrate the procedure of this approach, we 
consider the following general differential equation:  
 
Luሺxሻ ൅ Nuሺxሻ ൌ gሺxሻ,                                         (2) 
 
where L is a linear operator, N is a nonlinear 
operator and gሺxሻ is an inhomogeneous term. Then, 
we can construct a correction functional as follows:  
 
u୬ାଵሺxሻ ൌ u୬ሺxሻ ൅ ׬ 	

୶
଴ λሺLu୬ሺtሻ ൅ Nu෤୬ሺtሻ െ

gሺtሻሻdt,                                                                  (3) 
 
where λ is a general Lagrange multiplier which can 
be identified optimally via variational theory [17, 
13]. Here u෤୬ is considered as a restricted variation 
which means δu෤୬ ൌ 0 [13]. Therefore, we first 
determine the Lagrange multiplier λ that will be 
identified optimally via integration by parts. The 
successive approximation u୬ାଵሺxሻ, n ൒ 0 of the 
solution uሺxሻ will be readily obtained upon using 
the obtained Lagrange multiplier and by using any 
selective function u଴ሺxሻ. The zeroth approximation 
u଴ሺxሻ may be selected from any function that just 
satisfies, at least, the initial and boundary 
conditions. With λ determined, several 
approximations u୬ାଵሺxሻ, n ൒ 0 follow 
immediately. Consequently, the exact solution may 
be obtained as,  
 
uሺxሻ ൌ lim

୬՜ஶ
u୬ሺxሻ.                                                 (4) 

4. Some preliminaries 

4.1. Properties of Chebyshev polynomials 

The well known Chebyshev polynomials of the first 
kind [43] of degree n are defined on the interval 
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ሾ	െ1,1ሿ as  
 
T୬ሺxሻ ൌ cosሺnarccosሺxሻሻ.                                    (5) 
 

Obviously T଴ሺxሻ ൌ 1, Tଵሺxሻ ൌ x and they satisfy 
the recurrence relations:  
 
T୬ାଵሺxሻ ൌ 2xT୬ሺxሻ െ T୬ିଵሺxሻ,				n ൌ  (6)       .ڮ,1,2
 

Square integrable function uሺxሻ in ሾ	െ1,1ሿ, may 
be expressed in terms of Chebyshev polynomials as  
 
uሺxሻ ൌ ∑ u୨T୨ሺxሻ

ஶ
୨ୀ଴ ,                                             (7) 

 
where the coefficients u୨ are given by  
 

u୨ ൌ
ሺ୳ሺ୶ሻ,Tౠሺ୶ሻሻ౭

ሺTౠሺ୶ሻ,Tౠሺ୶ሻሻ౭
,			j ൌ  (8)                           .ڮ,0,1,2

 
Here, wሺxሻ ൌ

ଵ

ඥଵି୶మ
 and ሺ	. , . ሻ୵ is the inner 

product of L୵ଶ ሺ	െ1,1ሻ.  
 
Definition 4.1. [44] Let X be a normed linear space, 
let uሺxሻ in X be given, and let Y be a given subspace 
of X. 
1. An approximation כݑሺݔሻ in ܻ is said to be good 
(or acceptable) if  
 
ห|uሺxሻ െ uכሺxሻ|ห ൑ ε,                                            (9) 
 
where ε is a prescribed level of absolute accuracy. 
2. An approximation ݑ஻

כ ሺݔሻ in ܻ is a best 
approximation if, for any other approximation 
  ,ܻ ሻ inݔሺכݑ
 
||uሺxሻ െ uB

כ ሺxሻ|| ൑ ||uሺxሻ െ uכሺxሻ||.                 (10) 
 
Theorem 4.2. [41] Let uሺxሻ א H୩ሺെ1,1ሻ (Sobolev 
space), uMሺxሻ ൌ ∑ 	M

୨ୀ଴ u୨T୨ሺxሻ be the best 
approximation polynomial of uሺxሻ in L୵ଶ -norm, 
then  
 
||uሺxሻ െ uMሺxሻ||L౭మ ሾିଵ,ଵሿ ൑ C଴Mି୩||uሺxሻ||H౭

ౡ ሺିଵ,ଵሻ,  (11) 
 
where C଴ is a positive constant, which depends on 
selected norm and is independent of uሺxሻ and M. 

We choose the grid (interpolation) points to be 
the extrema  
 
x୧ ൌ െcos ቀ

୧஠

M
ቁ ൌ cos ቀ

ሺMି୧ሻ஠

M
ቁ ,			i ൌ ڮ,0,1 ,M,    (12) 

 
of the Mth order Chebyshev polynomial TMሺxሻ. 
These grids, x଴ ൌ െ1 ൏ xଵ ൏ ڮ ൏ xMିଵ ൏ xM ൌ 1 
are also viewed as the zeros of ሺ1 െ xଶሻTሶ ሺxሻ, where 

TሶMሺxሻ ൌ
ୢTMሺ୶ሻ

ୢ୶
. Clenshaw and Curtis [45] 

introduced the following approximation of the 
function uሺxሻ,  
 
uMሺxሻ ؄ ∑ 	M

୨ୀ଴ u෤୨T୨ሺxሻ,                                        (13) 
 

where u෤୨ are the Chebyshev coefficients which are 
determined by the formulations  
 

u෤୨ ൌ
ଶ

Mୡ෤ౠ
∑ 	M
୧ୀ଴

ଵ

ୡ෤౟
uሺx୧ሻcos ቀ

஠ሺMି୧ሻ୨

M
ቁ ൌ

ଶሺିଵሻౠ

Mୡ෤ౠ
∑ 	M
୧ୀ଴

ଵ

ୡ෤౟
uሺx୧ሻcos ቀ

஠୧୨

M
ቁ ,			j ൌ ڮ,0,1 ,M,      (14) 

 
and 
 

c෤୨ ൌ ൜
2,																	j ൌ 0,M,								
1,												1 ൑ j ൑ M െ 1.

                    (15) 

 
Remark 4.3. This paper discusses using Chebyshev 
polynomials of the first kind to approximate 
functions on finite interval, that is, on the interval 
ሾെ1,1ሿ. Practically, other polynomials, which are 
orthogonal on finite interval, can also be applied for 
approximating functions. But the partial sums of a 
first-kind Chebyshev expansion of a continuous 
function in ሾെ1,1ሿ, converge faster than the partial 
sums of an expansion in any other orthogonal 
polynomials [44]. 

4.2. Legendre-Gauss nodes and weights 

Let L୮ାଵሺxሻ be the Legendre polynomial of order 
p ൅ 1 on ሾെ1,1ሿ. Then the Legendre-Gauss nodes 
are  
 
െ1 ൏ ξ଴ ൏ ξଵ ൏ ڮ ൏ ξ୮ ൏ 1,                            (16) 
 
where ሼξ୧ሽ୧ୀ଴

୮  are the zeros of L୮ାଵሺxሻ. No explicit 
formulas are known for the points ξ୧, and so they 
are computed numerically using subroutines [46]. 
Also, we approximate the integral of fሺxሻ on ሾെ1,1ሿ 
as  
 
׬ 	
ଵ
ିଵ fሺxሻdx ؄ ∑ 	୮

୧ୀ଴ w୧fሺξ୧ሻ                                  (17) 
 
where ξ୧ are Legendre-Guass nodes in (16) and the 
weights w୧ are given in [41] as follows:  
 
w୧ ൌ

ଶ

ሺଵିஞ౟
మሻሾLᇱ౦శభሺஞ౟ሻሿమ

,				i ൌ ڮ,0,1 , p.                (18) 

 
It is well known [46] that the integration in (17) is 
exact whenever fሺxሻ is a polynomial of degree 
൑ 2p ൅ 1. 

5. Analysis of the H-S-VIM 

In this section, we present a new modified 
algorithm of the variational iteration method with 
the help of spectral method and Gauss quadrature 
integration method. 

Consider the nonlinear differential equation,  
 
Luሺxሻ ൅ Nuሺxሻ ൌ gሺxሻ,			0 ൏ ݔ ൑ ܶ,                  (19) 
 
where L is a linear operator, N is a nonlinear 
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operator and gሺxሻ is a known analytic function, 
subject to the initial conditions,  
 
uሺ୩ሻሺ0ሻ ൌ γ୩,			k ൌ ڮ,0,1 ,m െ 1,                     (20) 
 
where γ୩’s are real numbers. According to 
variational iteration method, we obtain the 
following iteration formula for (19) as,  
 
u୬ାଵሺxሻ ൌ u୬ሺxሻ ൅ ׬ 	

୶

଴
λሺx, tሻሺLu୬ሺtሻ ൅ Nu୬ሺtሻ െ gሺtሻሻdt, (21) 

 
where λ is a general Lagrange multiplier which can 
be identified optimally via variational theory. Here, 
according to initial condition (20), we can select the 
initial approximation u଴ሺxሻ.  
 
Remark 5.1. For variational iteration method, the 
key is the identification of Lagrange multiplier. For 
linear problems, their exact solutions can be 
obtained by only one iteration step due to the fact 
that the Lagrange multiplier can be exactly 
identified. For nonlinear problems, the lagrange 
multiplier is difficult to identify exactly. To 
overcome the difficulty, we apply restricted 
variations to nonlinear term. Due to the 
approximate identification of the Lagrange 
multiplier, the approximate solutions converge to 
their exact solutions relatively slowly. It should be 
specially pointed out that the more accurate the 
identification of the multiplier, the faster the 
approximations converge to their exact solutions 
and the higher accuracy can be obtained.  
 
Remark 5.2. It should be noted that in computation 
of integral in (21) two difficulties may arise: 
i) The nonlinear operator N, Lagrange multiplier λ 
and nonhomogeneous part may be ill-conditioned 
such that the integration becomes very complicated. 
ii) By increasing n the number of terms of 
approximate solution may increase so rapidly that 
the integration becomes both complicated and time 
consuming.  

So, to overcome these problems a new technique 
is presented here. 

At first, based on initial condition, the initial 
approximation u଴ሺxሻ is selected. By using iteration 
formula (21), we have  
 
uଵሺxሻ ൌ u଴ሺxሻ ൅ ׬ 	

୶

଴
λሺx, tሻ൫Lu଴ሺtሻ ൅ Nu଴ሺtሻ െ gሺtሻ൯dt.							(22) 

 
From (13) and (14), the function uଵሺxሻ on ሾ0, Tሿ 

can be approximated as  
 

uଵሺxሻ ؄ uଵMሺxሻ ൌ ∑ 	M
୨ୀ଴ u෤ଵ୨T୨ ቀ

ଶ

T
x െ 1ቁ,             (23) 

 
where  
 

u෤ଵ୨ ൌ
ଶሺିଵሻౠ

Mୡ෤ౠ
∑ 	M
୧ୀ଴

ଵ

ୡ෤౟
uଵሺx෤୧ሻcos ቀ

஠୧୨

M
ቁ ,				j ൌ ڮ,0,1 ,M, (24) 

 

and x෤୧ ൌ
T

ଶ
ሺx୧ ൅ 1ሻ, i ൌ ڮ,0,1 ,M. For finding the 

unknown coefficients uଵሺx෤୧ሻ, i ൌ ڮ,0,1 ,M, by 
substituting the grid points x෤୧, i ൌ ڮ,0,1 ,M in (22), 
we have  
 
uଵሺx෤୧ሻ ൌ u଴ሺx෤୧ሻ ൅ ׬ 	

୶౟
଴ λሺx෤୧, tሻ൫Lu଴ሺtሻ ൅ Nu଴ሺtሻ െ

gሺtሻ൯dt,				i ൌ ڮ,0,1 ,M.                                     (25) 
 

By change of variable t ൌ
୶෤౟
ଶ
ሺξ ൅ 1ሻ (25) can be 

written as:  
 

uଵሺx෤୧ሻ ൌ u଴ሺx෤୧ሻ ൅
x෤୧
2
න 	
ଵ

ିଵ
λ ቆx෤୧,

x෤୧
2
ሺξ ൅ 1ሻቇ F଴,୧ሺξሻdξ,					 

i ൌ ڮ,0,1 ,M,                                                          (26) 
 
where 
 
F଴,୧ሺξሻ ൌ ൫Lu଴ሺtሻ ൅ Nu଴ሺtሻ െ gሺtሻ൯|

୲ୀ
୶෤౟
ଶ ሺஞାଵሻ

,	 

i ൌ ڮ,0,1 ,M.                                                      (27) 
 

By applying numerical integration method given 
in (17), we can approximate the integral in the right 
hand of (26) and get: 
 

uଵሺx෤୧ሻ ൌ u଴ሺx෤୧ሻ ൅
x෤୧
2
෍	

୮

୪ୀ଴

w୪λ ቆx෤୧,
x෤୧
2
ሺξ୪ ൅ 1ሻቇ F଴,୧ሺξ୪ሻ,			 

i ൌ ڮ,0,1 ,M.                                                      (28) 
 

So, from (28), (24) and (23), we obtain the 
approximation of uଵሺxሻ. For finding the 
approximation of uଶሺxሻ, by substituting (23) in 
(21), we can obtain  
 
uଶሺxሻ ؄ uଵMሺxሻ ൅ ׬ 	

୶
଴ λሺx, tሻሺLuଵMሺtሻ ൅ NuଵMሺtሻ െ

gሺtሻሻdt.                                                                (29) 
 

In a similar way, the function uଶሺxሻ on ሾ0, Tሿ can 
be approximated as  
 

uଶሺxሻ ؄ uଶ
Mሺxሻ ൌ ∑ 	M

୨ୀ଴ u෤ଶ୨T୨ ቀ
ଶ

T
x െ 1ቁ,             (30) 

 
where 
 

u෤ଶ୨ ൌ
2ሺെ1ሻ୨

Mc෤୨
෍ 	

M

୧ୀ଴

1
c෤୧
uଶሺx෤୧ሻcos ൬

πij
M
൰,		 

	j ൌ ڮ,0,1 ,M.                                                     (31) 
 

Similarly, for finding the unknown coefficients 
uଶሺx෤୧ሻ, i ൌ ڮ,0,1 ,M, by substituting the grid points 
x෤୧, i ൌ ڮ,0,1 ,M in (29), we have  
 

uଶሺx෤୧ሻ ؄ uଵMሺx෤୧ሻ ൅ ׬ 	
୶෤౟
଴ λሺx෤୧, tሻ ቀLuଵMሺtሻ ൅

NuଵMሺtሻ െ gሺtሻቁ dt,					i ൌ ڮ,0,1 ,M.                   (32) 
 

By change of variable t ൌ
୶෤౟
ଶ
ሺξ ൅ 1ሻ, (32) can be 

written as:  
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uଶሺx෤୧ሻ ؄ uଵ
Mሺx෤୧ሻ ൅

x෤୧
2
න 	
ଵ

ିଵ
λ ቆx෤୧,

x෤୧
2
ሺξ ൅ 1ሻቇ Fଵ,୧ሺξሻdξ,	 

		i ൌ ڮ,0,1 ,M,                                                      (33) 
 
where 
 

Fଵ,୧ሺξሻ ൌ ቀLuଵMሺtሻ ൅ NuଵMሺtሻ െ gሺtሻቁ |
୲ୀ
୶෤౟
ଶ ሺஞାଵሻ

,			 

i ൌ ڮ,0,1 ,M.                                                      (34) 
 

By applying numerical integration method given 
in (17), we can approximate the integral in the right 
hand of (33) and obtain:  
 

uଶሺx෤୧ሻ ؄ uଵ
Mሺx෤୧ሻ ൅

x෤୧
2
෍ 	

୮

୪ୀ଴

w୪λ ቆx෤୧,
x෤୧
2
ሺξ୪ ൅ 1ሻቇ Fଵ,୧ሺξ୪ሻ,		 

	i ൌ ڮ,0,1 ,M.                                                       (35) 
 

Thus, from (35), (31) and (30), we can obtain the 
approximation of uଶሺxሻ. 

Generally, for n ൒ 2, according to the above 
method, we can obtain the approximation of u୬ሺxሻ 
as follows:  
 

u୬ሺxሻ ؄ u୬Mሺxሻ ൌ ∑ 	M
୨ୀ଴ u෤୬୨T୨ ቀ

ଶ

T
x െ 1ቁ,             (36) 

 
where  
 

u෤୬୨ ൌ
2ሺെ1ሻ୨

Mc෤୨
෍ 	

M

୧ୀ଴

1
c෤୧
u୬ሺx෤୧ሻcos ൬

πij
M
൰,			 

j ൌ ڮ,0,1 ,M,                                                      (37) 
 

u୬ሺx෤୧ሻ ؄ u୬ିଵ
M ሺx෤୧ሻ ൅

x෤୧
2
෍ 	

୮

୪ୀ଴

w୪λ ቆx෤୧,
x෤୧
2
ሺξ୪ ൅ 1ሻቇ F୬ିଵ,୧ሺξ୪ሻ,			 

i ൌ ڮ,0,1 ,M,                                                      (38) 
 
and 
 
F୬ିଵ,୧ሺξሻ ൌ ቀLu୬ିଵ

M ሺtሻ ൅ Nu୬ିଵ
M ሺtሻ െ gሺtሻቁ |

୲ୀ
୶෤౟
ଶ ሺஞାଵሻ

,				 

i ൌ ڮ,0,1 ,M.                                                      (39) 

6. The application of H-S-VIM in heat transfer 

In order to assess the accuracy of H-S-VIM for 
solving nonlinear equations, we consider the 
following example.  

6.1. Unsteady nonlinear convective-radiative 
equation 

Consider the cooling of a lumped system [37, 47], 
with volume V, surface area A, density ρ, specific 
heat c, emissivity E and initial temperature T୧. At 
time t ൌ 0, the system is exposed to an 
environment with convective heat transfer with 
coefficient h and the temperature Tୟ. The system 
also loses heat through radiation and the effective 
sink temperature is Tୱ. The cooling equation and the 

initial condition are as follows:  
 

c ൌ cୟሾ1 ൅ βሺT െ Tୟሻሿ, 
 
where β is a constant and cୟ is the specific heat at 
Tୟ. The cooling equation and the initial condition 
are as follows: 
 

ρVc
dT
dt

൅ hAሺT െ Tୟሻ ൅ EσAሺTସ െ Tୱସሻ ൌ 0,				Tሺ0ሻ ൌ T୧, 
 
which by using  
 

u ൌ
T
T୧
,				uୟ ൌ

Tୟ
T୧
,				τ ൌ

tሺhAሻ
ρVcୟ

,				εଵ ൌ βT୧,				εଶ

ൌ
EσT୧

ଷ

h
,				uୱ ൌ

Tୱ
T୧
, 

 
we have  
 

ሾ1 ൅ εଵሺu െ uୟሻሿ
du
dτ

൅ ሺu െ uୟሻ ൅ εଶሺuସ െ uୱସሻ ൌ 0,				 

uሺ0ሻ ൌ 1.                                                            (40) 
 

For simplicity, we assume uୟ ൌ uୱ ൌ 0. So we 
have  
 
ሾ1 ൅ εଵuሿ

ୢ୳

ୢத
൅ u ൅ εଶuସ ൌ 0,				uሺ0ሻ ൌ 1.          (41) 

6.2. VIM solution 

In order to solve (41) using VIM, we construct a 
correction functional as follows:  
 
u୬ାଵሺτሻ ൌ u୬ሺτሻ ൅ ׬ 	

த
଴ λሼ

ୢ୳౤ሺ୲ሻ

ୢ୲
൅ u୬ሺtሻ ൅

εଵu෤୬ሺtሻ
ୢ୳෥౤ሺ୲ሻ

ୢ୲
൅ εଶu෤୬ସሺtሻሽdt.                                (42) 

 
Its stationary conditions can be obtained as:  

 
λԢሺtሻ െ λሺtሻ ൌ 0,1 ൅ λሺtሻ|୲ୀத ൌ 0.                     (43) 
 

The Lagrangian multiplier can therefore be 
identified as  
 
λ ൌ െe୲ିத.                                                           (44) 
 

As a result, we obtain the following iteration 
formula:  
 
u୬ାଵሺτሻ ൌ u୬ሺτሻ െ ׬ 	

த
଴ e୲ିதሼ

ୢ୳౤ሺ୲ሻ

ୢ୲
൅ u୬ሺtሻ ൅

εଵu୬ሺtሻ
ୢ୳౤ሺ୲ሻ

ୢ୲
൅ εଶu୬ସሺtሻሽdt.                                (45) 

 
We can arbitrarily assign u଴ሺτሻ ൌ eିத, because 

the initial condition is satisfied just by substitution. 
Now using the iteration formula (45) and u଴ሺτሻ, we 
can get the first and second iteration results as 
follows:  
 
uଵሺτሻ ൌ eିத െ ଵ

ଷ
	ሺെ3	eଷ	தεଵ ൅ eଷ	தεଶ ൅ 3	εଵ	eଶ	த െ εଶሻeିସ	த,									(46) 
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uଶሺτሻ ൌ eିத െ
ଵ

ଷ
	ሺെ3	eଷ	தεଵ ൅ eଷ	தεଶ ൅ 3	εଵ	eଶ	த െ

εଶሻeିସ	த ൅	eିହ	தεଵଷεଶଶ െ eିହ	தεଶ	εଵସ െ
ସଵ

ଵଶ
	eିହ	தεଶ	εଵଶ ൅

ସଵ

ଷ଺
	eିହ	தεଵ	εଶଶ ൅  (47)                  .ڮ

 
Here, calculating u୬ሺτሻ for n ൒ 2 is difficult, 

because the nonlinear operator Nu ൌ εଵu
ୢ୳

ୢத
൅ εଶuସ 

is ill-conditioned such that the integration becomes 
very complicated. As n, the number of iterations is 
increased, also the number of terms in the 
approximate solutions increases. This increase is so 
rapid that the integration becomes both complicated 
and time consuming. 

6.3. H-S-VIM solution 

Now we apply hybrid spectral-variational 
iteration method for (41). We rewrite equation (41) 
in the form  
 
ሺ1 ൅ εଵሻሺ

ୢ୳

ୢத
൅ uሻ െ εଵሺ

ୢ୳

ୢத
൅ uሻ ൅ εଵu

ୢ୳

ୢத
൅ εଶuସ ൌ

0,				uሺ0ሻ ൌ 1.                                                      (48) 
 

In order to solve (48) using H-S-VIM, we 
construct a correction functional, as follows:  

			 
u୬ାଵሺτሻ ൌ u୬ሺτሻ ൅	׬ 	

த
଴ λሼሺ1 ൅ εଵሻሺ

ୢ୳౤ሺ୲ሻ

ୢ୲
൅

u୬ሺtሻሻ െ εଵሺ
ୢ୳෥౤ሺ୲ሻ

ୢ୲
൅ u෤୬ሺtሻሻ ൅ εଵu෤୬ሺtሻ

ୢ୳෥౤ሺ୲ሻ

ୢ୲
൅

εଶu෤୬ସሺtሻሽdt.                                                          (49) 
 

Its stationary conditions can be obtained as 
follows:  
 
λԢሺtሻ െ λሺtሻ ൌ 0,1 ൅ ሺ1 ൅ εଵሻλሺtሻ|୲ୀத ൌ 0.        (50) 
 

The Lagrangian multiplier can therefore be 
identified as  
 

λ ൌ λሺτ, tሻ ൌ
ିୣ౪షಜ

ଵାகభ
.                                             (51) 

 
As a result, we obtain the following iteration 

formula:  
 

u୬ାଵሺτሻ ൌ u୬ሺτሻ െ ׬ 	
த
଴

ୣ౪షಜ

ଵାகభ
ሼ
ୢ୳౤ሺ୲ሻ

ୢ୲
൅ u୬ሺtሻ ൅

εଵu୬ሺtሻ
ୢ୳౤ሺ୲ሻ

ୢ୲
൅ εଶu୬ସሺtሻሽdt.                                (52) 

 
According to subsection 6.2, we assume u଴ሺτሻ ൌ

eିத. Here, we introduce H-S-VIM with T ൌ 1,M ൌ
3 and p ൌ 15. By using H-S-VIM, we can get the 
following results: 
 
uଵሺτሻ ؄ uଵMሺτሻ ൌ A଴

ଵሺεଵ, εଶሻ ൅ Aଵଵሺεଵ, εଶሻτ ൅
Aଶ
ଵሺεଵ, εଶሻτଶ ൅ Aଷ

ଵሺεଵ, εଶሻτଷ,                               (53) 
 
where 
 

A଴
ଵሺεଵ, εଶሻ ൌ 1, 

 

Aଵଵሺεଵ, εଶሻ ൌ െ
0.9946917670 ൅ 0.04861741257	εଵ ൅ 0.8366849481	εଶ

1 ൅ εଵ
, 

 
Aଶଵሺεଵ, εଶሻ ൌ െ

െ0.4652490645 ൅ 0.6675430350	εଵ െ 1.300159144	εଶ
1 ൅ εଵ

, 
 

Aଷଵሺεଵ, εଶሻ ൌ
െ0.1026778560 ൅ 0.3165839374	εଵ െ 0.5799953807	εଶ

1 ൅ εଵ
, 

 
and 
 
uଶሺτሻ ؄ uଶ

Mሺτሻ ൌ A଴
ଶሺεଵ, εଶሻ ൅ Aଵଶሺεଵ, εଶሻτ ൅

Aଶ
ଶሺεଵ, εଶሻτଶ ൅ Aଷ

ଶሺεଵ, εଶሻτଷ,                               (54) 
 
where  
 

A଴
ଶሺεଵ, εଶሻ ൌ

1
ሺ1 ൅ εଵሻହ

ሺεଵହ ൅ 5.000000001	εଵସ

൅ 10.0	εଵଷ ൅ 10.0	εଵଶ

൅ 5.000000001	εଵ ൅ 1.0ሻ, 

Aଵଶሺεଵ, εଶሻ ൌ
1

ሺ1 ൅ εଵሻହ
ሺെ4.027047634	εଵ

െ 0.8375389178	εଶ ൅ ڮ
െ 1.107504415	εଵସεଶሻ, 

Aଶ
ଶሺεଵ, εଶሻ ൌ

1
ሺ1 ൅ εଵሻହ

ሺ1.192434444	εଵ

൅ 1.302323512	εଶ ൅ ڮ
൅ 0.03028760613	εଵεଶସሻ, 

Aଷ
ଶሺεଵ, εଶሻ ൌ െ

1
ሺ1 ൅ εଵሻହ

ሺ0.1026778663

൅ 0.09346488597εଵ ൅ڮ
൅ 0.08728867399	εଵସεଶሻ. 

 
For εଵ ൌ 2 and εଶ ൌ 3, we can obtain  
 

uଵሺτሻ ؄ uଵMሺτሻ ൌ 0.9999999998
െ 1.200660480	τ
൅ 1.010213477	τଶ

െ 0.4031653750	τଷ, 
uଶሺτሻ ؄ uଶ

Mሺτሻ ൌ 0.9999999998
െ 1.193833843	τ
൅ 1.037714238	τଶ

െ 0.4174625226	τଷ, 
uଷሺτሻ ؄ uଷ

Mሺτሻ ൌ 0.9999999997
െ 1.195895532	τ
൅ 1.045569435	τଶ

െ 0.4171926368	τଷ. 

6.4. Comparison discussions 

In this section, the current results are compared 
with the standard variational iteration method 
(VIM), homotopy perturbation method (HPM), 
homotopy analysis method (HAM), differential 
transformation method (DTM) and the exact 
solution in order to verify the accuracy of the 
proposed method. The exact solution of (41) is 
obtained in the following form [33]:  
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In the general case, according to the variational 
iteration method, for the nonlinear differential 
equation  
 
Lu ൅ Nu ൌ 0,                                                      (56) 
 
where L and N are linear and nonlinear operators 
respectively, the following algorithms can be 
constructed [51, 52]. 
1) Variational iteration algorithm-I 
 
u୬ାଵሺxሻ ൌ u୬ሺxሻ ൅ ׬ 	

୶
଴ λሼLu୬ሺtሻ ൅ Nu୬ሺtሻሽdt.  (57) 

 
2) Variational iteration algorithm-II 
 
u୬ାଵሺxሻ ൌ u଴ሺxሻ ൅ ׬ 	

୶
଴ λNu୬ሺtሻdt.                     (58) 

 
3) Variational iteration algorithm-III 
 
u୬ାଶሺxሻ ൌ u୬ାଵሺxሻ ൅ ׬ 	

୶
଴ λሼNu୬ାଵሺtሻ െ Nu୬ሺtሻሽdt.  (59) 

 
In this paper we used the variational iteration 

algorithm-I. Recently the variational iteration 
algorithm-II has gained much attention [51, 53, 54], 
while the variational iteration algorithm-III is rarely 
used. It is suggested that applying our method into 
these algorithms (algorithm-II and algorithm-III ) 
can be the subject of further research work. 

Nomenclature 

 Area, ݉ଶ ܣ
ܿ specific heat, ܭ݃݇/ܬ 
ܿ௔ specific heat at temperature ௔ܶ,  ܭ݃݇/ܬ
 surface emissivity, W ܧ
݄ Coefficient of natural convection, ܹ/݉ଶܭ 
 Linear operator ܮ
ܰ Nonlinear operator 
ܶ Temperature, ܭ 
௔ܶ Environment temperature, ܭ 
௜ܶ Initial temperature, ܭ 
௦ܶ Effective sink temperature, ܭ 
ܸ Volume, ݉ଷGreek symbols 
 ܭ/constant, volumetric thermal expansion coefficient, 1 ߚ
 small parameter ߝ
 mass density, ݇݃/݉ଷ ߩ
 Stefan–Boltzmann constant ߪ
߬ dimensionless temporal coordinate, ݏ 
 Lagrangian multiplier Subscripts ߣ
ܽ air 
݅ initial 
݊ order of approximation 
 surface ݏ
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