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Abstract

The purpose of this study is to implement a new modification of the variational iteration method (H-S-VIM),
which is a combination of spectral method and variational iteration method for heat transfer problems with high
nonlinearity order. The merit of this method is that it does not require the solution of any linear or nonlinear
system of equations unlike spectral method. Furthermore the proposed method is easy to implement and
computationally very attractive. Here, H-S-VIM is used to solve an unsteady nonlinear convective-radiative
equation containing two small parameters, &; and &,. It is observed that H-S-VIM may be implemented on other

strongly nonlinear models of physical nature.
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1. Introduction

Nonlinear phenomena in real world, that appear in
many applications in scientific fields, such as fluid
dynamics, solid state physics, -electricity and
magnetism, geophysics, plasma physics, kinetic
theory of gases, quantum mechanics, mathematical
economics, can be modeled by nonlinear
differential equations [1-3]. Except in a limited
number of these problems, we have difficulty in
finding their exact analytical solutions.

Developing of new semi-analytical and numerical
methods for approximation of the solutions of
strongly nonlinear differential equations is an
interesting research area of many engineers and
mathematicians.

In recent years, such techniques like Adomian
decomposition method (ADM) [4], the variational
iteration method (VIM) [5, 6], the homotopy
perturbation method (HPM) [7, 8], homotopy
analysis methds (HAM) [9, 10] and the tanh
method [11, 12] have drawn great attention from
scientists and engineers.

The wvariational iteration method (VIM) is
powerful in investigating approximate or analytical
solutions of nonlinear ordinary and partial
differential equations. This method is proposed by
the Chinese mathematician He [5, 13] as a
modification of a general Lagrange multiplier
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method proposed by Inokuti et al. in 1978 [14]. The
main concepts in VIM, such as general Lagrange
multiplier,  restrictive  variation,  correction
functional, are explained heuristically. Using the
VIM we can find the exact solution of the given
problem. The VIM has played an important role in
recent researches for solving various kinds of
problems. In this method the linear and nonlinear
structures are handled in a similar manner without
any need for restrictive assumptions.

The method is used successfully in several well-
known problems such as delay differential
equations [15], autonomous ordinary differential
systems [16], Burger’s and coupled Burger’s
equations [17], integro-differential equations [18],
Helmbholtz equations [19] and many other problems
[20-27]. The convergence of the method is
systematically discussed by Tatari and Dehghan
[24]. Comparison of the method with the Adomian
method was made by many authors via illustrative
examples. Wazwaz in particular, gave a complete
comparison between the two methods [26],
revealing the variational iteration method has many
merits over the Adomian method. It can completely
overcome the difficulty arising in the calculation of
the Adomian polynomial. Though the variational
iteration method leads to fast convergent solutions,
unnecessary calculation arises in the solution
procedure.

In order to accelerate the convergent rate, various
modifications have been suggested, for example,
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variational iteration-Padé method [28], variational
iteration-Adomian  method [29], variational
iteration-differential transform method [30]. Abassy
et al. suggested another effective modification [31].
Heydari et al. in [32], presented an efficient
modification of the variational iteration method for
solving boundary value problems using the
Chebyshev polynomials.

In this paper a new modification of variational
iteration method is proposed to find analytic
approximate solution of heat transfer problems with
high nonlinearity order [33]. This method is a
combination of spectral method and variational
iteration method, namely, hybrid spectral-
variational iteration method (H-S-VIM).

Recently many analytical methods have been
used to solve nonlinear equations arising in heat
transfer. Ganji [34] used the homotopy perturbation
method (HPM) to nonlinear equations arising in
heat transfer. Tari et al. [35] obtained an
approximate analytical solution of the nonlinear
equations arising in heat transfer by usin VIM.
Abbasbandy [36, 37] applied homotopy analysis
method (HAM) to solve nonlinear equation arising
in heat transfer and shown that the solutions
obtained by HPM [34] and perturbation method are
only special cases of the HAM solution. Marinca et
al. [38] use optimal homotopy analysis method
(OHAM) for solving nonlinear equations arising in
heat transfer. Yaghoobi et al. in [39], applied
differential transformation method (DTM) to
nonlinear equations arising in heat transfer.

The organization of this paper is as follows. The
spectral method and variational iteration method
(VIM) are introduced in Section 2 and 3,
respectively. Some necessary definitions and
mathematical preliminaries of the Chebysheve
polynomials are introduced in Section 4. In Section
5, the hybrid spectral-variational iteration method
(H-S-VIM) is presented. In Section 6, VIM and H-
S-VIM are applied on nonlinear equations arising in
heat transfer and comparisons between the VIM,
HPM, HAM, DTM, H-S-VIM and the exact
solution are presented. Section 7 ends this work
with a brief conclusion.

2. spectral method

Spectral methods, in the context of numerical
schemes for differential equations, belong to the
family of weighted residual methods (WRMs),
which are traditionally regarded as the foundation
of many numerical methods such as finite element,
spectral, finite volume and boundary element [40].
The base of spectral methods to solve differential
equations is to expand the solution function as a
finite series of very smooth basis function, as given

uM(x) = XM, wid (%), (D

in which, the best choice of ¢;(x) are the
eigenfunctions of a singular Sturm-Liouville
problem, for example, Chebyshev or Legendre
polynomials. If the function u(x) belongs to
C*[a, b], the produced error of approximation (1),
when M tends to infinity, approaches to zero with
exponential rate [41]. This phenomenon is usually
referred to as spectral accuracy [42].

Remark 2.1. In the spectral methods for solving a
differential equation, the problem of obtaining
approximate solution by solving a system of
algebraic equations is equivalent. Solving system of
algebraic equations in general is not easy. This
limitation is more apparent when M is a large
number.

3. Variational iteration method (VIM)

To illustrate the procedure of this approach, we
consider the following general differential equation:

Lu(x) + Nu(x) = g(x), (2)

where L is a linear operator, N is a nonlinear
operator and g(x) is an inhomogeneous term. Then,
we can construct a correction functional as follows:

Uns1 (X) = up(x) + [5 ALy (6) + Nii, (6) —
g(t)dt, (3)

where A is a general Lagrange multiplier which can
be identified optimally via variational theory [17,
13]. Here {i,, is considered as a restricted variation
which means 6T, = 0 [13]. Therefore, we first
determine the Lagrange multiplier A that will be
identified optimally via integration by parts. The
successive approximation Uy,;(x), n =0 of the
solution u(x) will be readily obtained upon using
the obtained Lagrange multiplier and by using any
selective function uy(x). The zeroth approximation
Uy (x) may be selected from any function that just
satisfies, at least, the initial and boundary
conditions.  With A  determined, several
approximations Up41(X), n=0 follow
immediately. Consequently, the exact solution may
be obtained as,

u(x) = limu,(x). “)
n—-oo
4. Some preliminaries

4.1. Properties of Chebyshev polynomials

The well known Chebyshev polynomials of the first
kind [43] of degree n are defined on the interval
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[—1,1] as where U; are the Chebyshev coefficients which are
determined by the fi lati

T, (%) = cos(narccos(x)). 5) etermined by the formulations

Obviously Ty(x) = 1, T;(x) = x and they satisfy
the recurrence relations:

Thr1(x) = 2xTy(x) = Thoy(x), n=12,--  (6)

Square integrable function u(x) in [ —1,1], may
be expressed in terms of Chebyshev polynomials as

u(x) = 220y T (x), @)
where the coefficients u; are given by

_ W T®)w

i — ’ = 0)1;21'”' 8
b Me0Ti 0w ®)

Here, w(x) = and (.,.)y is the inner

1
V1-x2
product of L2,( —1,1).

Definition 4.1. [44] Let X be a normed linear space,
let u(x) in X be given, and let Y be a given subspace
of X.

1. An approximation u*(x) in Y is said to be good
(or acceptable) if

[luG) —u @] <& )

where ¢ is a prescribed level of absolute accuracy.
2. An approximation up(x) in Y is a best
approximation if, for any other approximation
u(x)inY,

[uG) = up (D] < [Ju(x) — " ®I. (10)

Theorem 4.2. [41] Let u(x) € HX(—1,1) (Sobolev
space), uM(x) =Z]-I‘£0 uTj(x) be the best
approximation polynomial of u(x) in L2,-norm,
then

UG = WMz 11 < CoM ™M NUCO It 10y (1)

where C, is a positive constant, which depends on
selected norm and is independent of u(x) and M.

We choose the grid (interpolation) points to be
the extrema

X; = —Cos (g) = cos (%), i=01,-,M (12)

of the Mth order Chebyshev polynomial Ty (x).
These grids, xg = -1 <x; < <Xy_1 <Xy =1
are also viewed as the zeros of (1 — x?)T(x), where

Tm (%) =%. Clenshaw and Curtis [45]

introduced the following approximation of the
function u(x),

uM() = X, G, (13)

G = 2, L uCx)cos (RU) =
f; = g Yizo Eiu(xl)cos v =

2(-1)} 1 i\ .
5\4_&]-) Mo E—iu(xi)cos (%), j=01,--,M, (14)

and

~ 2, j=0,M,
C"_{L 1<j<M-1. (15)
Remark 4.3. This paper discusses using Chebyshev
polynomials of the first kind to approximate
functions on finite interval, that is, on the interval
[—1,1]. Practically, other polynomials, which are
orthogonal on finite interval, can also be applied for
approximating functions. But the partial sums of a
first-kind Chebyshev expansion of a continuous
function in [—1,1], converge faster than the partial
sums of an expansion in any other orthogonal
polynomials [44].

4.2. Legendre-Gauss nodes and weights

Let Ly41(x) be the Legendre polynomial of order
p+1 on [—1,1]. Then the Legendre-Gauss nodes
are

1< <E < <E <1, (16)

where {Ei}ipzo are the zeros of Ly q(X). No explicit
formulas are known for the points §;, and so they
are computed numerically using subroutines [46].
Also, we approximate the integral of f(x) on [—1,1]
as

S, f0dx = TP wif(E) (17)

where §; are Legendre-Guass nodes in (16) and the
weights w; are given in [41] as follows:

2

-2 i=01,-,p ]
Wi T DL G p (18)

It is well known [46] that the integration in (17) is
exact whenever f(x) is a polynomial of degree
<2p+1.

5. Analysisof theH-S-VIM

In this section, we present a new modified
algorithm of the variational iteration method with
the help of spectral method and Gauss quadrature
integration method.

Consider the nonlinear differential equation,

Lu(x) + Nu(x) = g(x), 0<x<T, (19)

where L is a linear operator, N is a nonlinear
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operator and g(x) is a known analytic function,
subject to the initial conditions,

u®0) =y, k=01, m—1, (20)

where 7vyy’s are real numbers. According to
variational iteration method, we obtain the
following iteration formula for (19) as,

Uns1 () = Un(X) + [ A0 ) (Lun () + Nuy (1) — g(©)dt, (21)

where A is a general Lagrange multiplier which can
be identified optimally via variational theory. Here,
according to initial condition (20), we can select the
initial approximation uy(x).

Remark 5.1. For variational iteration method, the
key is the identification of Lagrange multiplier. For
linear problems, their exact solutions can be
obtained by only one iteration step due to the fact
that the Lagrange multiplier can be exactly
identified. For nonlinear problems, the lagrange
multiplier is difficult to identify exactly. To
overcome the difficulty, we apply restricted
variations to nonlinear term. Due to the
approximate identification of the Lagrange
multiplier, the approximate solutions converge to
their exact solutions relatively slowly. It should be
specially pointed out that the more accurate the
identification of the multiplier, the faster the
approximations converge to their exact solutions
and the higher accuracy can be obtained.

Remark 5.2. It should be noted that in computation
of integral in (21) two difficulties may arise:
i) The nonlinear operator N, Lagrange multiplier A
and nonhomogeneous part may be ill-conditioned
such that the integration becomes very complicated.
ii) By increasing n the number of terms of
approximate solution may increase so rapidly that
the integration becomes both complicated and time
consuming.

So, to overcome these problems a new technique
is presented here.

At first, based on initial condition, the initial
approximation u,(x) is selected. By using iteration
formula (21), we have

uy(x) = uy(x) + fox A ) (Lug(® + Nup(®) —g(®)dt.  (22)

From (13) and (14), the function u,(x) on [0, T]
can be approximated as

~ 2
() = wf (%) = M, 0Ty (2x— 1), (23)
where
-1)) Ttij .
iy = TSl S @)eos (), 1=0.1,,M,(24)

and X; = g(xi +1),i=0,1,--,M. For finding the

unknown coefficients u,(%;),i=0,1,---,M, by
substituting the grid points %;,i = 0,1,---, M in (22),
we have

uy (X)) = up(X)) + f;(i A, £) (Luo (1) + Nug (1) —
g(®)dt, i=01,-,M. (25)

By change of variable t = %(E + 1) (25) can be
written as:

X 1 X
) = u) + 5 | 1%(&%@ + 1)) EGE

i=01,,M, (26)
where

F,; = (L t N t) —g(t % )
01® = (Luo(®) + Nug(®) ~ 8Ol sy,
i=01-,M. 27)

By applying numerical integration method given
in (17), we can approximate the integral in the right
hand of (26) and get:

N | 2@

- - i C < &
ug (i) = up(Xp) + Z wiA (Xi!E(El + 1)> Foi(G1,
1=0

i=01,--,M. (28)

So, from (28), (24) and (23), we obtain the
approximation of wuy(x). For finding the
approximation of u,(X), by substituting (23) in
(21), we can obtain
u; (0 = ul' (0 + f5 A0 O (L' (©) + Nup'(v) -
g(t)dt. (29)

In a similar way, the function u,(x) on [0, T] can
be approximated as

(0 = ud () = I, 0y T (3x - 1), (30)
where

o 2(-1ie 1 il

lip = MG ; e—iuz(xi)cos (ﬁ)’

j=01,--,M. (31

Similarly, for finding the unknown coefficients
u,(%;),i=0,1,---, M, by substituting the grid points
%, 1i=0,1,:--,Min (29), we have
uy (%) = (&) + )7 A, ) (Ludt() +
NuM(t) — g(t)) dt, i=01,,M. (32)

By change of variable t = %(E + 1), (32) can be
written as:
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o 1
u (%) = u)(®x) + %f (Xp &+ 1)) F1;(®)dg,
-1

i=01,-,M, (33)
where
Fii® = (Lul'® + Nul' (0 = 80) | s,
2
i= 0,1, M. (34)

By applying numerical integration method given
in (17), we can approximate the integral in the right
hand of (33) and obtain:

~ p ~
U () = u(E) + X;Z (xi%(zl + 1)) P8,
i=01,-,M - (€R))

Thus, from (35), (31) and (30), we can obtain the
approximation of u,(x).

Generally, for n > 2, according to the above
method, we can obtain the approximation of uy (x)
as follows:

~ 2
u(0) = ull () = M, Ty (2x - 1), (36)
where
- 2(— 1)12 ) (nij)
Uy = MG, - , Clun Xj)cos V)
i=
j=01,-,M, (37)

P .
() = W () +3 ) wﬂ(fq,%(m 1))Fn_1,i(a),

i=01,-,M, (38)
and

— M M _ <
ETGE CHRMOERTHICEC) INEP
i=01,-,M. (39)

6. The application of H-S-VIM in heat transfer

In order to assess the accuracy of H-S-VIM for
solving nonlinear equations, we consider the
following example.

6.1. Unsteady nonlinear convective-radiative
equation

Consider the cooling of a lumped system [37, 47],
with volume V, surface area A, density p, specific
heat c, emissivity E and initial temperature T;. At
time t=0, the system is exposed to an
environment with convective heat transfer with
coefficient h and the temperature T,. The system
also loses heat through radiation and the effective
sink temperature is Ts. The cooling equation and the

initial condition are as follows:
c=ca[1+B(T - Tl

where f3 is a constant and c, is the specific heat at
T,. The cooling equation and the initial condition
are as follows:

dT R
pVe +hA(T = T,) + EoA(T* = T$) = 0, T(0) =T,

which by using
T T, t(hA)
u=i, Uy =?i. T= Ve, g =BT, &
_ EoT? T
- h ) us - Tl:
we have

[1+ (0= )] ot (@ ) + et —ud) =0,
u(0) = 1. (40)

For simplicity, we assume u, = ug = 0. So we
have

[1+eu]T+uteut =0, u0) =1 @)

6.2. VIM solution

In order to solve (41) using VIM, we construct a
correction functional as follows:

un+1(r)—un(r)+f ARG 4y, () +

10 () To + £, (D) de (42)
Its stationary conditions can be obtained as:
N —A) =014+ A(t)|=c = 0. (43)

The Lagrangian multiplier can therefore be
identified as

A=—e"" (44)
As a result, we obtain the following iteration
formula:

T t_rdup(t)
Up+1(T) = uy(0) — fo et T{% +uy () +

£, () 722 + g puf (D)dt. (45)

We can arbitrarily assign uy(t) = e™", because
the initial condition is satisfied just by substitution.
Now using the iteration formula (45) and uy(T), we
can get the first and second iteration results as
follows:

w(t)=e™" —g (—3e3%g;, +e3%g, + 3¢, e2T—g,)e™T, (46)
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— 1
uy(t) =e7 = (-3 e3%e; +e3%, + 3¢, 27—

Sz)e—4t + e—51813822 _ e—STSZ s14 _
41 _ 41 _
S et e e e gl 4 (47)

Here, calculating u,(t) for n =2 is difficult,
. d

because the nonlinear operator Nu = 51ud_: + g,ut
is ill-conditioned such that the integration becomes
very complicated. As n, the number of iterations is
increased, also the number of terms in the
approximate solutions increases. This increase is so
rapid that the integration becomes both complicated
and time consuming.

6.3. H-S'VIM solution

Now we apply hybrid spectral-variational
iteration method for (41). We rewrite equation (41)
in the form

d d d
1+ sl)(d—:+ u) — sl(d—:+u) + slud—:+ gut =
0, u(0)=1. (48)

In order to solve (48) using H-S-VIM, we
construct a correction functional, as follows:

Up41(T) = up(0) + f M1+ 1)(d“n(t)
un(t)) _ (dun(t) (t)) + Elun(t) dun(t)
&1, (D }dt. (49)

Its stationary conditions can be obtained as
follows:

VO =20 =01+ (1+e)A®)|ec=0.  (50)

The Lagrangian multiplier can therefore be
identified as

A=AT ) = (1)

As a result, we obtain the following iteration
formula:

dun (t)

Upp1(T) = uy(T) — f

£, () 22 4

1+g; tun(®) +
+ gui(D)}dt. (52)

According to subsection 6.2, we assume U, (T) =
e *. Here, we introduce H-S-VIM with T = 1,M =
3 and p = 15. By using H-S-VIM, we can get the
following results:

uy (7) = u)' (1) = Af(ey, £2) + Al (g, €2)T +
Az (&1, SZ)T + A3 (&1, Sz)T (53)

where

Ap(er,82) =1

0 9946917670 + 0.04861741257 €, + 0.8366849481 sz

Al(er, &) =

1+¢g
N —0.4652490645 + 0.6675430350 ¢, — 1.300159144 sz

Aj(gr,8) = — T+e

1
—0.1026778560 + 0.3165839374 ¢, — 0.5799953807 52

Ai(e8r) =
1+¢
and

Uy (1) = up (T) A%(SL ;) + A%(Sp €)T+

Az (g1 52)'r + A3 (g1 82)'53: (54)
where
A2 = ! 5 +5.000000001 &,*
0(€1, &) = RETSE (&1 : &

+10.0 &5 + 10.0 ¢, 2
+5.000000001 &, + 1.0),

1
Ai(ey,8) = m (—4.027047634 ¢,
1

—0.8375389178 ¢, +
—1.107504415 g, *,),

1
A% (81, 82) = m (1192434444 €1
+1.302323512 ¢, +
+0.03028760613 g, £,%),
A(gy,€,) = — = (0.1026778663

(1+¢)
+ 0.09346488597¢, +
+ 0.08728867399 ¢, %¢,).

For g, = 2 and €, = 3, we can obtain

u, (1) = uM(t) = 0.9999999998
— 1.200660480 T
+1.010213477 2
— 0.4031653750 T3,
u, (1) = ud(t) = 0.9999999998
—1.193833843 1
+1.037714238 2
— 0.4174625226 13,
uz(1) = u)(t) = 0.9999999997
— 1.195895532
+ 1.045569435 12
— 0.4171926368 T°.

6.4. Comparison discussions

In this section, the current results are compared
with the standard variational iteration method
(VIM), homotopy perturbation method (HPM),
homotopy analysis method (HAM), differential
transformation method (DTM) and the exact
solution in order to verify the accuracy of the
proposed method. The exact solution of (41) is
obtained in the following form [33]:
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1 1+ gud
3 \(1+¢)u

1
1 [ (14 &u3)( +gud)

1gg
+ 5—1 —=In T
& (1+&)1+€u)’
2¢3 -1
+ \/§ arctan 2
V3
1
. 2eu—1

—arctan| —=—— =T

V3

All the computations associated with the method
have been performed by a personal computer
having the Intel Pentium 5, 2.2 GHz processor and
using Maple 13 with 32 digits precision. The
calculations presented in this section adopt a value
of p =15 for H-S-VIM (See subsection 4.2). We
denote the square residual error of approximate
solutions u(t) for (41), in the following form:

A, = J, (RES(D)%dr, (55)
where RES(T) = [1 + £u(1)] 52 + u(1) + £;u(1)*.

Figure 1 shows the temperature distribution by
using H-S-VIM (n = 15 and M = 20) and the exact
solution for cooling of a lumped system with
variable specific heat coefficient on the interval
[0,10]. The comparisons between the approximate
solutions by using VIM and H-S-VIM with M = 10
on the interval [0,1] for & = 0.8,&, = 0.5 and
€ =3,6, =2 are given in Tables 1 and 2,
respectively .

1

0.8+ g

E,=0, £,=0.4,0.8, 1.2, 1.6, 2.0, 2.4, 2.8, 3.2

0.

o

0.

=

0.24

] 2 4 6 3 10

Fig. 1. Comparison of results of H-S-VIM (bold circle)
and exact solution (solid line) for (41)

Table 1. Comparisons of A, forg; = 0.8,&, = 0.5

CPU .
. A,(H-=S CPU time
n A, (VIM) tl(rsr;e —VIM) )

1 0.0182983760 0.843 0.0030789439 1.563

2 0.0090279662 2.344 0.0002215198 1.608

3 Fail ———0.0000159048 1.688
4 Fail ———0.0000011213 1.765
5 Fail ——— 0.0000000776  1.923

Table 2. Comparisons of A, fore; = 3,¢, = 2

CPU
n AL (VIM) time
()
1 6.0658113076 0.829 0.09651901015 1.500

Ay(H-S CPU time
— VIM) (s)

2 15.783171494 1.766 0.01415309332 1.547

3 Fail ———0.0018761813 1.687
4 Fail ———0.0002358425 1.844
5 Fail ———0.0000289583 1.907

As shown in Fig. 2, for all values of the small
parameters, €; and €,, the difference between H-S-
VIM with n = 15,M = 20 and the exact solution
on the interval [0,8] are negligible.

(@)
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© 2 ®

01 (b)

L
o

i
oo

0.4 . ©

Fig. 2. Comparison of results of H-S-VIM (bold circle)
and exact solution (solid line), (a) e, = 0.8,&, = 0.5, (b)
g1 =1¢e,=2,(c)e; =3,e,=2and(d) g; = 4,&, =3

Comparisons are made between 5th-order of
HPM [48], 5th-order of HAM [37] for h = —0.8,
Sth-order of H-S-VIM with M =20 and exact 25
solution, for some values of &;,€, on the interval
[0,1] are plotted in Fig. 3. Since the results of HPM 20
can be obtained as a special case of HAM when ]
h = —1, from Figs. 3, it is evident that HPM loses 154
its validity for relatively large values of €; and €.

Table 3. Comparisons of A, of Sth-order solutions 1
of different approaches for £;=1 s1f 7T

Method

=1

& =2

& =3

H-S-VIM
MHAM for h=-0.5 [49]
HAM for h=-0.8 [37]
HAM for h=-0.9 [37]
HPM (HAM for h=-1) [48]

0.00000719625
0.00000645794
0.00001294614
0.00026131005
0.00278084263

0.00000215180
0.00000225316
0.06332372453
0.45943918392
2.08587335265

0.00000328251
0.00185417178
4.39671710926
270.979958125
358312.798216

Fig. 3. 5th-order of HPM (dash), 5th-order of HAM for
h = —0.8 (dash dot), 5th-order of H-S-VIM (bold circle)
and exact solution (solid line),(a)e; = 3,e, =1, (b)
€1 =2,6=3,(c)g; =3, =3 and(d)g; =4,&, =3
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From Tables 3-5, it seems that H-S-VIM with
M = 20 gives better approximations than the HPM
[48], HAM [37] for h=-08h=-09 and
MHAM [49] on the interval [0, 6].

Table 4. Comparisons of A, of 5th-order solutions
of different approaches for g; = 2

Method =1 5 =2 g =3
H-S-VIM 0.0011535394 0.00041717183 0.00020999108
MHAM for 0.0016937936 0.00043080927 0.00018897928
h=-0.5 [49] : ’ '

g?%f]"’ h=- 1.7740609725 0.29707799102 7.73726355555
g‘;g;}” h=- 13.500883632 2.52627773025 24.9031191524
HPM (HAM

86.150467589 18.0667149197 284907280951

for h=-1) [48]

Table 5. Comparisons of A, of 5th-order solutions
of different approaches for g; = 3

Method =1 & =2 &=3

H-S-VIM 0.0117655542 0.004971082412 0.00268939756
MHAM for h=-0.5 [49] 0.2251073087 0.007103244505 0.00301374746
HAM for h=-0.8 [37] 741.25718288 527.1191196254 140.804634925
HAM for h=-0.9 [37] 9333.2489875 15082.47186259 3983.73926254

HPM (HAM for h=-1) [48] 329295.21567 14603605.62548 314587.045985

Also, Fig. 4 show the ’residual error’ for 10-th
order approximation H-S-VIM with M = 25 and

HAM for h = % [37] on the interval [0,5] and
1
clearly indicate that the H-S-VIM gives rapid

convergence. Here the ’residual error’ is defined as
follows:

. du(t)
ResidualError = [1 + gu(t)] . + u(T)
+ gu(D)*

H-S-VIM withe,=lande,=3
0.0005 4
0.0004
0.00035

HAMwith e;=lande, =3

0.03 4

0024

0.01

H-S-VIM withe; =3ande, =3

-0.001

-0.002 -

=0.003 -

-0.004 4

=0.005 4

=0.007 4

=0.008

HAMwith e;=3and e, =23
0.010 4

-0.005 -

-0.0104

Fig. 4. Comparison between residual error of
H-S-VIM and HAM for h = ——,

1+g,

In Table 6, we compared the absolute errors of
VIM [50], HPM [50], DTM [39] and 4-th order of
H-S-VIM with M =10 on the interval [0,1] at
T = 0.2 for (41). In Table 7, we assume that ; = 0
and then compared H-S-VIM (n =5 and M = 10)
with the study of Ganji et al. [48] and Yaghoobi et
al. [39] on the interval [0,1] at T = 0.5.

Table 6. The absolute errors of VIM, HPM,
DTM and H-S-VIM at t = 0.2 for (41)

P VIM (%)[50] __HPM (%)[50] __DTM (%) [39] __ H-S-VIM (%)

0.4 0.4 0.1281 0.1247 0.001888 6.921x 1078
0.4 0.6 0.2934 0.3064 0.005815 0.000001586
0.4 0.8 0.8751 0.9745 0.013804 0.000005403
0.8 0.4 2.5181 1.6447 0.000418 0.00002768
0.8 0.6 1.7748 1.6447 0.001349 0.000008088
0.8 0.8 0.8101 0.7835 0.003305 0.000002448

Table 7. The results of VIM, HPM, DTM and H-S-VIM
their absolute errors at £, = 0 and T = 0.5

B VIM (%) [48] HPM (%) [48] DTM (%) [39] __ H-S-VIM (%)
0.0 1.64872 x 10710 1.64872 x 10710 0.0000002748  1.263 x 10711
0.1 4.28955 x 107F 7.80444 x 1075 0.0000090257  2.126 x 1071
0.2 0.000318544 0.000602619 0.0000263434  1.124x 1078
0.3 0.000999783 0.001966880 0.0000550763  1.036 x 107
0.4 0.002207405 0.004516592 0.0000984091  4.800 x 107
0.5 0.004021512 0.008559256 0.0001598850  0.000001529
0.6 0.006490236 0.014371001 0.0002434237  0.000003845
0.7 0.009636553 0.022201898 0.0003533413  0.000008228
0.8 0.013463676 0.032280117 0.0004943625 0.00001567

0.9 0.017959388 0.044815230 0.0006716365 0.00002731

1.0 0.023099547 0.060000859 0.0008907421 0.00004444
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Clearly, u'(0) = — i:z and
1
u’’(0) = %, the H-S-VIM solution
1

(n =2,M = 20) with this exact one to show the
accuracy for large values of €; and €,, (see Fig. 5)
when €, = 2¢ and &, = €. Also, Fig. 6 shows the
absolute errors of u’(0) and u”(0) with respect to
g; and &, by using H-S-VIM with n=2 and
M =20 on the interval [0,1] when (gq,¢,) €
[0,10] x [0,10].

u'(0) -1.54
-1.64
-1.74
-1.84

-1.94

0 80 100

=¥
|
=
4=
=)

u”(0)

b
L

€

Fig. 5. The graph of u’(0) and u’’(0) with respect to &,
2™-order of H-S-VIM (bold circle) and exact
values (solid line)

1.8 % 1075
1.6 x 10°%
l_-lxli]'“‘_
1.2 % 1075
1.x Iu"‘—_
8% 1077
6.%x 1077
4.% 1077
2.% 1077

.

0.0016+

0.0008

0.000677

0.0004-1

0.0002—

Fig. 6. The absolute errors of u’(0) and u’'(0) by
using H-S-VIM withn = 2 and M = 20

7. Conclusion

In this study, we successfully proposed a novel
hybrid spectral-variational iteration method (H-S-
VIM) for solving nonlinear equations arising in
heat transfer. By analyzing and comparing the
results obtained and procedures used in H-S-VIM
and VIM, we observe that the new approach
overcomes the difficulty arising in calculating
complicated and time consuming integrals.
Moreover, it was shown that for this kind of
problem, H-S-VIM is better than HPM, VIM, HAM
and DTM because by increasing small parameters
of ¢ and &, the error of H-S-VIM is less than
previous solutions in comparison with exact
solution. These results shows us the validity and
great potential of the H-S-VIM for nonlinear
models in mathematical and physics with high
accuracy.

This paper discusses using Chebyshev
polynomials interpolation to approximate functions.
Further research can be initiated based on applying
other orthogonal polynomials such as Legendre
Polynomials and other interpolation such as Fourier
interpolation, rational interpolation and spline
interpolation.
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In the general case, according to the variational
iteration method, for the nonlinear differential
equation

Lu+ Nu=0, (56)

where L and N are linear and nonlinear operators
respectively, the following algorithms can be
constructed [51, 52].

1) Variational iteration algorithm-I

Une1(¥) = up(0) + [ ALuy (1) + Nup (D}t (57)
2) Variational iteration algorithm-II
Une1(X) = Up(x) + f; ANuy (D)dt. (58)
3) Variational iteration algorithm-I11
Uns2(X) = Une (%) + f5' MNUnes () = Nup(D)}dt. (59)

In this paper we used the variational iteration
algorithm-I. Recently the variational iteration
algorithm-II has gained much attention [51, 53, 54],
while the variational iteration algorithm-III is rarely
used. It is suggested that applying our method into
these algorithms (algorithm-II and algorithm-III )
can be the subject of further research work.

Nomenclature

Area, m?

specific heat, J /kgK

specific heat at temperature T, J/kgK
surface emissivity, W

Coefficient of natural convection, W /m2K
Linear operator

Nonlinear operator

Temperature, K

Environment temperature, K

Initial temperature, K

Effective sink temperature, K

Volume, m3Greek symbols

constant, volumetric thermal expansion coefficient, 1/K
small parameter

mass density, kg/m3
Stefan—-Boltzmann constant
dimensionless temporal coordinate, s
Lagrangian multiplier Subscripts

air

initial

order of approximation

surface

)
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