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following notation for the norm of the operator 

M :  
 

= .


M  

 
We also point out that if   is a multiplier and 

G , then  
 

.)(=*
  kkM  

 
Also, we say that M ( H )  is isometrically 

rotation invariant if whenever ( )M Hj Î , 

( )M Hqj Î  and =  
 

 where 

)(=)( zez i
   . By )(GH  and )(GH 

 we 

mean respectively the set of analytic functions on a 
plane domain G  and the set of bounded analytic 
functions on G .  

2. Main results  

In this article, we investigate the reflexivity of the 

powers of the multiplication operator zM  acting 

on a Hilbert function space.  
From now on, let   be a domain in the complex 

plane such that 1  is equal to the open unit disc

D . Also, suppose that the Hilbert space H  under 
consideration satisfy the following axioms:  
 
Axiom 1. H  is a subspace of the space of all 
analytic functions on  . 
 
Axiom 2. For each  , the linear functional of 

evaluation at  , e , is bounded on H . 

 

Axiom 3. The uniform limits of polynomials on   
is contained in M ( H )  and M ( H )  is 

isometrically rotation invariant.  
 

Axiom 4. The sequence { } k k Zf  is an orthogonal 

basis for H  where k
k zzf =)(  for all integers k . 

Note that by axiom 4, each function Hf   can be 

represented by series expansion nn
fnff )(ˆ= . 

For ( )h M HÎ  and w D , define wh  by 

)(=)( wzhzhw . Thus )(ˆ=)(ˆ nhwnh n
w  for all 

n . Also, since 1|=| w  we have  
 

2 2 2 22 2ˆ ˆ= | ( ) | = | ( ) | = . w w n n
n n

h h n f h n f h  

 
The following theorem extends the results 

obtained by Allen Shields [9] that have been proved 
only for the special case where H  is the Hilbert 
space of formal Laurent series. 
 
Lemma 2.1. Let ( )M Hj Î . If g  is a 

continuous complex valued function on D  and 

 /2|=| dwd  is the normalized Lebesgue 

measure on D , then the operator  
 

( ) 
 wD

g w d  

 
defined by  
 

( ( ) ) = ( )   
  w wD D

g w d f g w M fd  

 
is in M ( H )  and  
 

( ) | | .  
 

 wD D
g w d M g d  

 
Proof: Note that the strong operator continuity of 

w  allows us to define  
 

( ) 
 wD

g w fd  

 
for all Hf  . If Hhf , , then  
 

< ( ) , >= ( ) < , > .   
  w wD D

g w fd h g w f h d

 
 
So we get  
 

( ) | | .  
 

 wD D
g w fd M f g d  

 
Hence  
 
( ( ) ) = ( ) | | .    

  
  wD D Dw

g w d f g w M fd M f g d  

 
This completes the proof. 
 

Lemma 2.2. If 1( ) ( )H M HjÎ W Ç , then there 

exists a sequence of polynomials }{ nr  such that 

)(ˆ)
1

(1=)(ˆ j
n

j
jrn 


  whenever nj 0,...,=  
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and is 0  else, and MM
nr
  in the weak 

operator topology. 
 

Proof: Let 1( ) ( )H M HjÎ W Ç . Since 

1 = D , we can represent   by a power series 

=0

ˆ ( ) .k

k

k zj
¥

å  Put  

 

0,)(ˆ)
1

(1=)(
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


 nzk
n

k
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k
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0.,,)
1

||
(1=)(

||


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nUww
n

k
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nk
n  

 
Then  
 

*
( ) = , 0 


 w n K nD

K w d M n  

 
where  
 

*
=0

ˆˆ( )( ) = ( ) ( ) = ( ).  
n

j
n n n

j

K z j K j z P  

 

Note that 0nK  and  
 

= 1.nD
K d 

  
 

For all 0n , ( ) ( )nP M Hj Î  and by 

Lemma 2.1, we get  
 

*( )|| ||=|| || || || =|| || .   


 P K nn n D
M M M K d M

 
 

Put )(= nn Pr . Note that 
nr

M  is represented 

by the matrix whose (i,j)-th entry is  
 

2 2ˆ ˆ< , >= ( ) = (1 ) ( ) .
  r j i n i in

i j
M f f r i j f i j f

n
 
 
Hence  
 

>,>=<,<lim ijijnrn
ffMffM   

 

for all base elements jf  and if  in H . By the 

boundedness of the sequence }{
nr

M  we have 

MM
nr
  in the weak operator topology. This 

completes the proof.  
 

Theorem 2.3. If }:{ e  is norm bounded, 

then kz
M  is reflexive for all 1k .  

 
Proof: The boundedness of point evaluations and 
the Closed Graph Theorem ensure that in 

multiplication by z , zM  is a bounded operator on 

H . Let k N  and note that 

)()( kzkz
MAlgLatMW  . On the other hand, let 

)( kz
MAlgLatX  . Since )()( kzz MLatMLat  , 

we have )()( XLatMLat z  . This implies that 

)( zMAlgLatX  . Note that since 

 eeM z =*  for all   in  , the one 

dimensional span of e  is invariant under 
*
zM . 

Therefore, it is invariant under *X  and we can 

write   ,)(=* eeX . So  
 

)()(>=,>=<,< *  feXfeXf  
 
for all Hf   and  . This implies that 

MX =  and ( )M Hj Î , hence )( H . 

Now put 1N H ( )W¥= . Then N ¹Æ , 

since 1 NÎ . Note that by axiom 3, 

( )N HÌM . To see this let )( 1 Hf . 

Since 1  is a Caratheodory domain, by the Farrel-

Rubel-Shields Theorem [1, Theorem 5.1, p. 151], 

there is a sequence }{ np  of polynomials 

converging to f  such that for all n , N  for some 

0>c . So nnp }{  is a normal family in )(H  

and by passing to a subsequence if necessary, we 

may suppose that for some function g , gpn   

uniformly on compact subsets of  , this implies 
that indeed fg = . Hence by axiom 3, 

( )f M HÎ  and so ( )N M H HÌ Ì . Also, 

it is a closed subspace of H , since if { }n nh NÌ  

and fhn   in H , so for all n , 1n H
h c  for 

some 0>1c . Because point evaluations are 

bounded, for all   in   we have  
 

).(>=,<>,=<)(   fefehh nn   
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Also, we note that for all   in  ,  
 

2| ( ) |=|< , >|   n n n nH H
h h e h e c h  

 

where 2 = sup{ : }  c e . Thus  
 

2 1 2
 n n H

h c h c c  
 

for all n . Since )( 1 Hhn , 
1

=
 n nh h  

and so 1 2
1
nh c c  for all n . This implies that 

nnh }{  is a normal family in )( 1H  and we may 

assume that for some function g , ghn   

uniformly on compact subsets of 1 . Thus 

)( 1 Hg . But by pointwise convergence 

gf =  on   and so f  can be extended to a 

bounded analytic function on 1 , i.e., 

)( 1 Hf  and so N  is indeed a closed 

subspace of H . Now clearly ( )zN Lat MÎ , 

thus XN ÌN . Since 1 NÎ  we get 

11 = ( )X N Hj ¥Î Ì W . Now by Lemma 2.2, 

there exists a sequence of polynomials }{ nr  

(indeed )(= nn Pr ) such that MM
nr
  in 

the weak operator topology. Now let kM  be the 

closed linear span of the set 0}:{ nfnk  (recall 

that i
i zzf =)(  for all i ). We have  

 

( 1)=k nk n k kz
M f f M+ Î  

 
for all 0n . Thus ( )k kz

Lat MM Î  and so 

( )k Lat MM jÎ . Let n

n

znz )(ˆ=)(
0=

 


. Since 

1 kMÎ , thus 1 = kM Mj jÎ . Hence 0=)(ˆ i  

for all nki  , 0n . Now, by a consequence of 

the particular construction of nr  used in Lemma 

2.2, each nr  should be a polynomial in kz , i.e., 

)(=)( k
nn zqzr  for some polynomial nq . Thus  

 
XMqMrM kznznnr

)(=)(=  

 

in the weak operator topology. Hence 

)( kz
MWX  . Thus kz

M  is reflexive and this 

completes the proof.  
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