
IJST (2013) 37A3 (Special issue-Mathematics): 349-358
Iranian Journal of Science & Technology

http://ijsts.shirazu.ac.ir

A preemptive restarting approach to beating the
inherent instability of Lanczos-type algorithms

M. Farooq1* and A. Salhi2

1Department of Mathematics, University of Peshawar, 25120, Khyber Pakhtunkhwa, Pakistan

2Department of Mathematical Sciences, University of Essex, Wivenhoe Park, Colchester, CO4 3SQ, UK
E-mails: mfarooq@upesh.edu.pk & as@essex.ac.uk

Abstract

Lanczos-type algorithms are well known for their inherent instability. They typically breakdown occurs when
relevant orthogonal polynomials do not exist. Current approaches to curing breakdown rely on jumping over the
non-existent polynomials to resume computation. This may have to be used many times during the solution
process. We suggest an alternative to jumping, which consists of restarting the algorithms that fail. Three different
strategies can be taken: (ST1) Restarting following breakdown of the algorithm in use; (ST2) pre-emptive
restarting after a fixed number of iterations; (ST3) restarting when near breakdown is detected through monitoring.
We describe a restarting framework with a generic algorithm that invokes one or the other of the three strategies

suggested. Four of the most prominent recently developed Lanczos-type algorithms namely, 4 12 5 10, , /A A A B
and

8 10/A B will be presented and then deployed in the restarting framework. However, we will only report on

results obtained with strategy ST2 as it is the only viable one at the moment.

Keywords: Lanczos algorithm; Systems of Linear Equations; Formal Orthogonal Polynomials, Restarting,
Switching, Breakdown

1. Introduction

The Lanczos-type methods for solving Systems of
Linear Equations (SLEs) are based on the theory of
Formal Orthogonal Polynomials (FOPs). All such
methods are implemented via some recurrence
relationships between polynomials ()kP x

represented by Ai or between two adjacent families

of orthogonal polynomials ()kP x and (1) ()kP x

represented by Ai and Bj as described in [1, 2]. The
coefficients of the various recurrence relationships
for orthogonal polynomials are given as ratios of
scalar products. When a scalar product in a
denominator vanishes, then a breakdown occurs in
the algorithm and the process normally has to be
stopped. Equivalently, the breakdown is due to the
non-existence of some orthogonal polynomials. So
quite an important problem is how to be able to
continue the solution process in such a situation and
arrive at a usable result. Several procedures for that
purpose have appeared in the literature in the last
few years. It has been proved that it is possible to
jump over non-existing polynomials [3], and
breakdown-free algorithms were thus obtained. The
first attempt in this regard was the look-ahead Lanczos

*Corresponding author
Received: 23 July 2012 / Accepted: 1 December 2012

algorithm [4]. Other procedures for avoiding
breakdown are also proposed in [5-12]. The
procedure for jumping over non-existing orthogonal
polynomials can be described as follows:
1. Recognize the occurrence of breakdown;
2. Determine the degree of the next existing
(regular) orthogonal polynomial;
3. Find the recurrence relationship to compute it,
i.e. jump over the non-existing orthogonal
polynomials.

This idea of the degree of the next regular
polynomial or the length of the jump is explained in
[13-19]. Note that it is not our purpose here to
compare the advantages of these various methods.

2. The Lanczos approach

We consider a linear system of equations,

,Ax b (1)

where n nA R  , n nb R  and n nx R  .

Let 0x and y be two arbitrary vectors in nR

such that 0y  . The Lanczos method [20] consists

of constructing a sequence of vectors kx nR

defined as follows [21],

IJST (2013) 37A3 (Special issue-Mathematics): 349-358 350

0kx x Kk(A, r0) = span(r0,Ar0, . . . ,
1kA 

r0), (2)

rk = (b − Axk) Kk(A

T, y) = span(y, TA y, . . . 1()T kA  y), (3)

where TA denotes the transpose of A.
Equation (2) leads to,

xk − x0 = −α1r0 − α2Ar0 − · · · − αk
1kA 

r0. (4)

Multiplying both sides by A and adding and

subtracting b on the left hand side gives

rk = r0 + α1Ar0 + α2
2A r0 + · · · + αk

kA r0. (5)

From (3), the orthogonality condition gives

(,) 0
iT

kA y r  , for i = 0, . . . , k − 1,

and, by (5), we obtain the following system of
linear equations

1 0 0 0

1 1 1
1 0 0 0

(,) . . . (,) (,)

(() ,) . . . (() ,) (() ,)

k
k

T k T k k T k
k

y Ar y A r y r

A y Ar A y A r A y r

 

   

    


  

 (6)

If the determinant of the above system is different

from zero then its solution exists and allows us to

obtain kx and kr . Obviously, in practice, solving

the above system directly for the increasing value
of k is not feasible. We shall now see how to solve
this system for increasing values of k recursively. If
we set

 1() 1 ... ,k
k kP x x x     (7)

then we can write from (5)

0()k kr P A r . (8)

The polynomials kP are commonly known as the

residual polynomials.

Another interpretation of the kP can be found in

[22]. Moreover, if we set

0 0(,) (,)
iT i

ic A y r y A r  i = 0, 1, . . .

and if we define the linear functional c on the
space of polynomials by

()i
ic x c , i = 0, 1, . . . (9)

c is completely determined by the sequence { }kc

and kc is said to be the moment of order k, [23].

Now, the system (6) can be written as

(()) 0i
kc x P x  , for i = 0, . . . , k − 1. (10)

These conditions show that kP is the polynomial

of degree at most k, normalized by the condition

(0) 1,kP  belonging to FOP’s with respect to the

linear functional c [23], which is briefly reviewed
in Section 3. For more details see [24]. Such a
family is called family of orthogonal polynomials
with respect to the functional c and the preceding
relations are called the orthogonality relations.

Since the constant term of kP in (7) is 1, it can be

written as

1() 1 ()k kP x xR x 

where 1

1 1 2() ... k
k kR x x x   
     . Replacing

x by A in the expression of kP and multiplying both

sides by 0r and using (8), we get

0 1 0()k kr r AR A r  ,

which can be written as

0 1 0()k kb Ax b Ax AR A r    ,

or

0 1 0()k kAx Ax AR A r    .

Multiplying both sides by 1A , we get

0 1 0()k kx x R A r  ,

which shows that kx can be computed from kr

without inverting A.

3. Formal orthogonal polynomials

The orthogonal polynomials kP defined in the

previous section are given by the determinantal
formula,

0

1 2 1

1

2 1

1 . . .

. . .

. .

. .

. .

. . .
() ,

. . .

. .

. .

. .

. . .

k

k

k k
k

k

k k

x

c c

c c
P x

c c

c c

 





(11)

351 IJST (2013) 37A3 (Special issue-Mathematics): 349-358

where the denominator of this polynomial is (1)

kH

[25]. Obviously, kP exists if and only if the Hankel

determinant (1) 0kH  , thus, 1kP  exists if and only

if (1) 0kH  . We assume that k, (1) 0kH  , if for

some k, (1) 0kH  , then kP does not exist and

breakdown occurs in the algorithm (in numerical
calculations the breakdown can occur even if

(1) 0kH ).

Let us now define a linear functional (1)c [25] on
the space of real polynomials as

(1) 1
1() ()i i

ic x c x c
  and let

(1)

kP be a

family of orthogonal polynomials with respect to
(1)c . These polynomials are called monic

polynomials [25] (The polynomial in which the
highest degree coefficient is always 1) and are
given by the following formula:

1 1

2

(1)

1

2 1

. . .

. .

. .

. . .

1 . . .
() .

. . .

. .

. .

. .

. . .

k

k k

k

k
k

k k

c c

c c

x
P x

c c

c c







(12)

(1) ()kP x also exists if and only if the Hankel

determinant (1) 0kH  [25], which is also a

condition for the existence of ()kP x . There exist

many recurrence relations between the two adjacent

families of polynomials kP and (1)
kP [25]. Some of

these recurrence relations have been reviewed by
Magnus, Gragg, Draux, and Gutknecht describing
the recursions for formal orthogonal polynomials
(FOPs) and, on the other hand, an investigation by
Parlett and his student Taylor. See, e.g.,
Gutknecht’s survey paper [26] for a description of
the historic development and for the exact
references. See also [27, 28] for more details. Some
more recurrence relations between the two families
of orthogonal polynomials have been studied in
[29], leading to new Lanczos-type algorithms.

A Lanczos-type method consists of computing kP

recursively, then kr and finally kx such that

k kr b Ax  , without inverting A, which gives the

solution of the system Ax b in at most n steps,

in exact arithmetic, where n is the dimension of the
linear system.

4. Recalling some existing algorithms

In the following we will recall some of the most
recent and efficient Lanczos-type Algorithms to be
used in the restarting framework. The reader should
consult the relevant literature for more details.

4.1. Algorithm A12

Algorithm A12 is based on relation A12. For details
on the derivation of relation A12, its coefficients and
the algorithm itself, please refer to [29]. The
pseudo-code of Algorithm A12 can be described as
follows.

Algorithm 1. Algorithm A12

__
1: Choose x0 and y such that y ≠ 0,
2: Choose ε small and positive, as a tolerance,

3: Set r0 = b − Ax0, y0 = y, p = Ar0, p1 = Ap,
 c0 = (y, r0),

4: c1 = (y, p), c2 = (y, p1), c3 = (y, Ap1),

 2
1 3 2 ,c c c  

5:

2
0 3 1 2 0 2 1

0 0
1 0 1 0 0

1 1

, ,

, .

c c c c c c c

c c
r r p x x r

c c

 
 
 

 

   

6: r2 = r0 − αp + βp1, x2 = x0 + αr0 − βp,

7: y1 = AT y0, y2 = AT y1, y3 = AT y2.

8: for k = 3, 4,. . . , n do

9: yk+1 = AT yk, q1 = Ark -1, q2 = Aq1, q3 = Ark - 2,
10: a11 = (yk-2, rk-2), a13 = (yk-3, rk-3), a21 = (yk-1, rk-2),
a22 = a11,

11: a23 = (yk-2, rk-3), a31 = (yk, rk-2), a32 = a21,
a33 = (yk-1, rk-3),

12: 11
k+1 2 k 3

13

s = (y , r), (y , r),k k k

a
t F

a   

13: b1 = −a21 − a23Fk, b2 = −a31 − a33Fk,
b3 = −s − tFk,

14: ∆k = a11(a22a33 − a32a23) + a13(a21a32 − a31a22),

15: 1 22 33 32 23 13 2 32 3 22()_ ()_
k

k

b a a a a a b a b a
B 




IJST (2013) 37A3 (Special issue-Mathematics): 349-358 352

16: 1 11 2 21 23

k k
13 22

b b 1
G = , = ,k k k

k
k k

a B a B a G
C A

a a C G

  



,

17: rk = Ak{q2 + Bkq1 + Ckrk - 2 + Fkq3 + Gkrk - 3},

18: xk = Ak{Ckxk-2 + Gkxk-3 − (q1 + Bkrk -2 + Fkrk-3)},

19: if || ||kr  , then

20: kx x , stop.

21: end if

22: end for

4.2. Algorithm A4

Algorithm A4 is based on relation A4 which is
already considered by C. Bahuex in her PhD thesis.
Its pseudo-code is as follows.

Algorithm 2. Algorithm A4
__
1: Choose x0 and y such that y ≠ 0,
2: Choose ε small and positive as a tolerance,

3: Set 0 0r b Ax  , 0y y

4: for k = 0, 1,. . . , n do

5:
1 1

1 1

(,)
, 1 0

(,)
k k

k
k k

y r
E for k and E

y r
 

   

6: 1 1
1

(,) (,)
,

(,)
k k k k k

k
k k

y Ar E y r
B

y r
 




 

7: 1
1 1

1
,k

k k

A
B E

 

 


8:  1 1 1 1 1 ,k k k k k k kx A B x E x r      

9:  1 1 1 1 1 ,k k k k k k kr A Ar B r E r      

10: if 1|| ||kr   , then

11: 1 .T
k ky A y 

12: end if

13: end for

4.3. Algorithm 5 10/A B

Algorithm 5 10/A B is based on relations A5 and

B10, first investigated by C. Bahuex in her PhD
thesis. Its pseudo-code is as follows.

Algorithm 3. Algorithm A5/B10

1: Choose 0x , y and tolerance ε ≥ 0;

2: Set 0 0r b Ax  , 0 0p r , 0y y ,

3:
 
 

0 0 0
1 1

0 0

,
, 1

,

y r
A C

y Ar
  

4: 1 0 1 0r r A Ar  , 1 0 1 0x x A r  .

5: for k = 1, 2, 3, . . . , n do

6: 1
T

k ky A y 

7: 1 1
1 1

(,)
,

(,)
k k

k
k k k

y r
D

C y p
 

 

8: 1
1 1 1k k k k kp r D C p   

,

9: 1

(,)
,

(,)
k k

k
k k

y r
A

y Ap  

10: 1 1 ,k k k kr r A Ap  

11: 1 1 ,k k k kx x A p  

12: if 1|| ||kr   , then if kA  , then

13:
1

1 1 .k
k

k

C
C

A


14: end if

15: end for

4.4 Algorithm A8/B10: The pseudo-code of A8/B10 is
as follows.

Algorithm 4 Algorithm A8/B10

1: Choose x0 and y such that y ≠ 0.

2: Set 0 0r b Ax 

3: 0 0z r

353 IJST (2013) 37A3 (Special issue-Mathematics): 349-358

4: 0y y

5: for k = 0, 1, 2, . . . ,n do

6:
1

(,)
,

(,)
k k

k
k k

y r
A

y Az  

7: 1 1k k k kr r A Az  
,

8: 1 1 ,k k k kx x A z  

9: if 1|| ||kr   then

10: 1 ,T
k ky A y 

11: 1
1

1

1
,k

k

C
A





12:
1

1 1 1 1
1

(,)

(,)
k k k

k
k k

C y r
B

y Az
  

   ,

13: 1 1
1 1 1 1 .k k k k kz B z C r    

14: end if

15: end for

5. Restarting an algorithm as a way to remedy
the breakdown problem

When a Lanczos-type algorithm fails, it is due to
the non-existence of some coefficients of the
recurrence relations on which the algorithm is
based. The iterate which causes these coefficients
not to exist does not cause and should not
necessarily cause any problem when used in
another Lanczos-type algorithm, based on different
recurrence relations. It is therefore obvious that one
may consider switching to another algorithm when
breakdown occurs [30]. This means that it is
possible to remedy breakdown by switching. It is
also the case that the iterate generated by a
Lanczos-type algorithm that causes it to fail can be
used to initialize the same algorithm successfully.
This allows the algorithm to work in a Krylov space
with a different basis. It is therefore also possible to
remedy breakdown by restarting.

5.1. Restarting strategies

They follow the same pattern as switching [30],
except that here, the alternative algorithm to switch
to is the same as the one we started with. This
means that, by re-initializing the Lanczos process
with another iterate, the last one found starts
working with a different Krylov space base. This is
enough to fix any numerical difficulties that have
occurred and avert any that might occur. Different
strategies can be adopted for restarting different
algorithms. These are as follows.
1. Restarting after breakdown: Start a particular
Lanczos algorithm until a breakdown occurs, then
restart the same Lanczos algorithm, initializing it
with the last iterate of the failed algorithm. We call
this strategy ST1.
2. Pre-emptive restarting: Run a Lanczos-type
algorithm for a fixed number of iterations, halt it
and then restart it, initializing it with the last iterate.
Note that there is no way to guarantee that
breakdown would not occur before the end of the
interval. This strategy is called ST2.
3. Breakdown monitoring: Provided monotonicity
of reduction in the absolute value of denominators
involved in the coefficients of the polynomials
involved can be established, breakdown can be
monitored as follows. Evaluate regularly those
coefficients with denominators that are likely to
become zero. Restart the algorithm when the
absolute value of any of these denominators drops
below a certain level. This is strategy ST3.

5.2. A generic restarting algorithm

Suppose we have a set of Lanczos-type
algorithms and we want to use one of these
algorithms in the restarting framework using one of
the above mentioned strategies ST1, ST2 or ST3.
Then the following algorithm can be used.

Algorithm 5 Generic restarting algorithm

1: Start the most stable algorithm, if known.

2: Choose a restarting strategy from {ST1, ST2,
ST3}.

3: if ST1 then

4: Continue with current algorithm until it halts;

5: if solution is obtained then

6: Stop.

7: else

8: restart the same algorithm;

IJST (2013) 37A3 (Special issue-Mathematics): 349-358 354

9: initialize it with current iterate,

10: Go to 4.

11: end if

12: else if ST2 then

13: Continue with current algorithm for a fixed
number of iterations until it stops;

14: if solution is obtained then

15: Stop.

16: else

17: restart the same algorithm,

18: initialize it with the current iterate,

19: Go to 13.

20: end if

21: else

22: Continue with current algorithm and monitor
certain parameters for breakdown, until it halts

23: if solution is obtained then

24: Stop.

25: else

26: restart the same algorithm,

27: initialize it with current iterate,

28: Go to 22.

29: end if
30: end if

Note that we have only considered strategy ST2 in

this paper. Strategy ST1 is not going to be efficient
because a breakdown causes the programme to halt.
This requires restarting it by hand. Since this occurs
rather frequently, particularly in high dimensions, it
is not practical to carry out experiments in this case.
Strategy ST3 is not implemented since it is clear
that it will not be efficient, at least in the sequential
environment we are operating in. Looking at
algorithms A4, A12, A5/B10, and A8/B10 given earlier,
one notices easily that they involve identifying the
coefficients of FOP’s used in the Lanczos process.

Many of these coefficients are ratios. It is the
denominator quantities of these ratios that have to
be monitored in ST2. There may be a lot of them
and there is no obvious way to see which one is
decreasing alarmingly and threatening to cause
breakdown. There is a serious amount of work yet
to be done to understand how these coefficients
behave in order to find which ones should be
monitored closely. It is also reasonable to assume
that, in a parallel environment many can be
monitored simultaneously, not in a sequential
environment. For these reasons, we have only
investigated strategy ST2. In the following, a
generic algorithm implementing ST2 is given. Note
that a convergence tolerance ε = 1.0e-013 and 20
iterations per cycle are used in all experiments.

5.3. Implementing ST2

ST2 takes as input a given algorithm from a pre-
specified list. Here, these algorithms are the ones
already listed above, i.e. A4, A12, A5/B10, and A8/B10.
Depending on whether the algorithms are of the Ai-
type (i.e. Lanczos-type algorithm based on a single
recurrence relation) or Ai/Bj-type (i.e. Lanczos-type
algorithm based on two recurrence relations),
initialisation has to be done differently; Ai-type

requires x0, 0 0r b Ax  and 0y y , and Ai/Bj-

type requires 0x , 0 0r b Ax  and 0y y as

well as 0 0z r . The general ST2 algorithm can be

described, therefore, as follows.

5.3.1. Algorithm ST2

Algorithm 6 ST2 restarting algorithm

1: Choose algorithm ALG from {A4, A12, A5/B10, A8/B10}

2: Choose x0 and y such that y ≠ 0,

3: set 0 0r b Ax  , 0y y ,

4: if 4 12ALG A ALG A   then

5: 0 0z r ;

6: end if

7: run ALG for a fixed number of iterations (a
cycle) or until it halts;

8: if solution is obtained then

355 IJST (2013) 37A3 (Special issue-Mathematics): 349-358

9: stop;

10: else

11: initialize it with the current iterate;

12: go to 3;

13: end if

5.3.2. Numerical results

Algorithms 1, 2, 3, 4, and algorithm ST2
restarting each one of them [17] has been
implemented in Matlab and applied to a number of
small to medium size problems for different values
of δ. The test problems we have used arise in the 5-
point discretisation of the operator

2 2

2 2x y x
  

  
  

 on a rectangular region. We

refer to them as the Baheux-type problems since we
borrowed them from her PhD thesis. These
problems are important because they represent the
typical SLE’s that crop up in the real world. They
are also used by Baheux herself to test three of the
algorithms used here. Comparative results are
carried out on instances of size ranging from n = 20
to n = 4000 of the problem Ax b with A and b
as follows

... ... 0

:

: ,

:

0

B I

I B

A

B I

I B

 
  
 
 

 
  

with

4 0

4 :

:

: 4

0 4

B


 

 


 
 
 
 
 
 
 
 

and 1    , 1    . The parameter δ

takes values 0.0, 0.2, 5 and 8 respectively. The right

hand side b is taken to be b AX , where

(1,1,...,1)TX  the solution of the system is. The

dimension of B is 10. When δ = 0, the coefficient
matrix A is symmetric and the problem is easy to
solve because the region is a regular mesh [31]. For
all other values of δ, the matrix A is non-symmetric
and the problem is comparatively hard to solve as
the region is not a regular mesh.

The results obtained with algorithms

4 12 5 10, , /A A A B and
8 10/A B executed with the ST2

restarting each one of them, for different values of δ
on Baheux type problems, are recorded in Tables 1,
2, 3 and 4 below. The results show that the
restarting algorithm ST2 is far superior to any one
of the algorithms considered individually.

5.3.3. Comments on the numerical evidence

We have implemented 4 12 5 10, , /A A A B and

8 10/A B to solve a number of problems of the type

described in Section 5.3.2 with dimensions ranging
from 20 to 4000. The results are compared against
those obtained by the restarting strategy ST2 used

on each one of the algorithms 4 12 5 10, , /A A A B and

8 10/A B , on the same problems. They show that

algorithms 4 12 5 10, , /A A A B and
8 10/A B are not as

robust as when they are restarted in a preemptive
fashion (under ST2). Outside the restarting
framework, the algorithms failed to solve any of the
problems for dimensions greater than 40. Within
the restarting framework, all problems have been
solved with high precision. This is recorded in
Table 1 through Table 4. The results, undoubtedly
point to restarting as another way of curing
breakdown in Lanczos-type algorithms.

IJST (2013) 37A3 (Special issue-Mathematics): 349-358 356

Table 1. Numerical results for δ = 0

Dim of Prob ST2(A4) ST2(A12) ST2(A5/B10) ST2(A8/B10)

n | | | |kr T(s) | | | |kr T(s) | | | |kr T(s) | | | |kr T(s)

20
40
60
80

100
200
400
600
800
1000
2000
3000
4000

3.8545e-014
6.0376e-014
8.8041e-014
9.8201e-014
2.6273e-014
7.5106e-014
8.2317e-014
8.9464e-014
8.5604e-014
8.7519e-014
8.3024e-014
9.9026e-014
9.2511e-014

0.0010
0.0043
0.0125
0.0140
0.0193
0.0803
0.5170
0.9418
1.5466
2.4005
9.3332
24.8801
48.0754

8.4317e-014
7.7873e-014
3.8138e-014

6.1219e-014
9.4670e-014
6.1319e-014
9.0230e-014
9.6683e-014
8.8581e-014
8.4853e-014
5.5149e-014
9.4196e-014
6.0811e-014

0.0075
0.0126
0.0161
0.0205
0.0216
0.0931
0.4105
2.0031
3.2419
4.7680
21.6685
56.1770
113.4374

1.8157e-014
2.2438e-014
2.3873e-014
7.9308e-014
2.4008e-014
9.9663e-014
8.0372e-014
9.7269e-014
9.9864e-014
9.6715e-014
7.8361e-014
8.7229e-014
7.8230e-014

0.0050
0.0102
0.0127
0.0163
0.0161
0.0652
0.9814
2.9632
5.8682
8.7822
20.4821
61.0065
141.9979

8.0535e-014
7.4281e-014
6.6555e-014
7.1708e-014
7.5103e-014
7.6984e-014
9.1328e-014
6.9507e-014
9.7003e-014
9.2346e-014
8.2291e-014
9.3587e-014
9.1120e-014

0.0076
0.0135
0.0214
0.0220
0.0227
0.0705
0.7058
2.1481
4.7235
8.5468
39.4606
103.5353
176.2555

Table 2. Numerical results for δ = 0.2

Dim of Prob ST2(A4) ST2(A12) ST2(A5/B10) ST2(A8/B10)

n | | | |kr T(s) | | | |kr T(s) | | | |kr T(s) | | | |kr T(s)

20
40
60
80
100
200
400
600
800

1000
2000
3000
4000

9.9896e-014
4.9296e-014
6.0957e-014
5.7129e-014
5.3007e-014
2.2236e-014
9.0428e-014
6.6926e-014
8.6281e-014
9.0327e-014
7.7193e-014
8.1792e-014
8.9238e-014

0.0084
0.0191
0.0210
0.0250
0.0305
0.0980
0.4163
1.0532
1.5170
2.1245
8.0167
19.2173
36.0361

8.9978e-014
5.1552e-014
5.5319e-014
9.2631e-014
9.4369e-014
9.9659e-014
8.5500e-014
9.2957e-014
4.8311e-014
8.1326e-014
9.1597e-014
9.1855e-014
9.8884e-014

0.0130
0.0292
0.0328
0.0388
0.0440
0.1485
0.3117
1.1802
1.8420
3.3795
12.8866
45.6061
74.3756

5.0531e-014
8.7027e-014
5.4364e-014
9.1910e-014
3.2209e-014
5.8291e-014
8.0768e-014
6.9817e-014
8.2814e-014
9.8567e-014
9.3404e-014
6.1042e-014
9.2065e-014

0.0108
0.0205
0.0280
0.0362
0.0392
0.0851
0.5826
2.4674
3.2158
7.8925
33.4418
123.3084
280.4058

6.1999e-014
5.2118e-014
7.2870e-014
3.5101e-014
7.0508e-014
6.1683e-014
8.2751e-014
9.9801e-014
7.1025e-014
7.8650e-014
8.1368e-014
8.2046e-014
8.0349e-014

0.0137
0.0240
 0.0314
0.0410
 0.0431
0.1164
 0.7639
2.0367
4.7437
8.1761
30.7758
89.0659
180.6880

Table 3. Numerical results for δ = 5

Dim of Prob ST2(A4) ST2(A12) ST2(A5/B10) ST2(A8/B10)

N | | | |kr T(s) | | | |kr T(s) | | | |kr T(s) | | | |kr T(s)

20
40
60
80

100
200
400
600
800
1000
2000
3000
4000

1.2543e-014
6.7523e-014
2.9307e-014
6.9125e-014
6.9001e-014
5.4021e-014
6.9921e-014
2.6118e-014
4.5923e-014
4.5632e-014
9.8816e-014
7.1675e-014
7.9284e-014

0.0110
0.0442
0.0524
0.0634
0.0707
0.1661
0.4889
0.9507
1.9086
3.0028
9.4847
37.2835
60.0409

2.1773e-014
4.5708e-014
9.5280e-014
4.0822e-014
6.7233e-014
7.2644e-014
9.8208e-014
9.4438e-014
8.6228e-014
9.1161e-014
8.0887e-014
7.1249e-014
6.0671e-014

0.0168
0.0691
0.1127
0.0909
0.1195
0.1957
1.0148
1.2438
1.9261
5.6501
32.3405
66.3288
118.7937

1.6184e-014
9.8328e-014
6.4059e-014
3.3983e-014
9.3530e-014
9.1453e-014
9.2802e-014
9.9646e-014
5.7573e-014
9.9696e-014
9.1481e-014
8.5008e-014
8.1534e-014

0.0133
0.0556
0.0573
0.0766
0.0846
0.1553
0.8543
2.1217
4.0326
6.1502
29.4155
81.7649
173.6725

5.8176e-014
8.3294e-014
7.5235e-014
9.7386e-014
8.6400e-014
9.2653e-014
5.7742e-014
9.0410e-014
9.9560e-014
8.7909e-014
5.2993e-014
6.3973e-014
5.1241e-014

0.0159
 0.0466
 0.0584
0.0759
0.0914
0.1747
0.8976
1.6980
3.2380
6.6809
29.2111
85.8018
145.5099

357 IJST (2013) 37A3 (Special issue-Mathematics): 349-358

Table 4. Numerical results for δ = 8

Dim of Prob ST2(A4) ST2(A12) ST2(A5/B10) ST2(A8/B10)

n | | | |kr T(s) | | | |kr T(s) | | | |kr T(s) | | | |kr T(s)

20
40
60
80

100
200
400
600
800
1000
2000
3000
4000

1.2127e-014
9.1661e-014
6.2183e-014
9.5772e-014
8.9719e-014
9.7792e-014
6.3091e-014
9.5208e-014
7.7096e-014
9.8712e-014
8.6980e-014
7.8024e-014
6.6516e-014

0.0116
0.0403
0.0782
0.0750
0.0729
0.1528
0.3592
1.0349
1.9936
4.8990
13.9378
42.6996
115.1201

9.9725e-014
8.8142e-014
8.2240e-014
6.8254e-014
9.2600e-014
5.7848e-014
9.0009e-014
9.7036e-014
2.4209e-014
9.4187e-014
5.5222e-014
7.5285e-014
9.2836e-014

0.0162
0.0727
0.0928
0.0893
0.1520
0.2396
0.5326
1.5674
4.2043
5.2569
29.6383
73.6804
159.9751

7.6040e-014
2.1073e-014
9.1420e-014
6.1842e-014
9.5086e-014
6.8288e-014
6.1809e-014
4.1802e-014
6.2004e-014
3.8734e-014
9.4111e-014
4.5003e-014
6.7992e-014

0.0132
0.0601
0.0783
0.0974
0.1059
0.1784
0.9791
2.7026
4.9577
7.3104
36.2889
84.8624
179.9848

6.4653e-014
6.9719e-014
2.4335e-014
6.4862e-014
5.3579e-014
6.4354e-014
9.7548e-014
4.8723e-014
9.3335e-014
8.7525e-014
6.8768e-014
7.9196e-014
8.6748e-014

0.0121
0.0547
0.0671
0.0933
0.1075
0.2528
1.1240
2.3533
4.6741
7.1334
38.3224
100.3153
228.4823

6. Conclusion

The restarting strategy ST2 considered seems to be
very successful at remedying and avoiding
breakdown in Lanczos-type algorithms. The
supporting numeral evidence is very strong in this
respect. Indeed, restarting solved all problems up to
dimension of 4000 while individual algorithms only
managed to solve them for lower dimensions (≤
40). The cost of preemptive restarting is not
substantial. In the case of monitoring the
coefficients that can vanish, although the cost is
only that of a test of the form if |denominator value|
≤ tolerance then stop, many such tests may be
carried out. We have not measured its impact on the
overall computing time. Positive experimental
results point to restarting as a significant approach
to avoiding breakdown in solving SLE’s by
Lanczos-type algorithms. This idea is not only
different from existing strategies for dealing with
breakdown, [32-34], but also quite easy to
understand and follow. However, it remains for
some more extensive testing to be done on both
large real and randomly generated problems to fully
understand the behavior and cost of the restarting
approach compared to state-of-the-art Lanczos-type
algorithms with in-built precautions to avoid
breakdown such as MRZ and BSMRZ. Further
work is being expanded in this direction.

References

[1] Baheux, C. (1994). Algorithmes ďimplementation de
la méthode de Lanczos, PhD thesis, University of Lille
1, France.

[2] Baheux, C. (1995). New Implementations of Lanczos
Method. Journal of Computational and Applied
Mathematics, 57, 3-15.

[3] Brezinski, C. & Sadok, H. (1993). Lanczos-type
algorithms for solving

systems of linear equations. Applied Numerical
Mathematics, 11, 443-473.

[4] Parlett, B. N., Taylor, D. R. & Liu, Z. A. (1985). A
Look-Ahead Lanczos Algorithm for Unsymmetric
Matrices. Mathematics of Computation, 44, 105-124.

[5] Brezinski, C. M., Zaglia, R. & Sadok, H. (1991).
Avoiding breakdown and nearbreakdown in Lanczos
type algorithms. Numerical Algorithms, 1, 261-284.

[6] Brezinski, C., Zaglia, M. R. & Sadok, H. (1992).
Addendum to Avoiding breakdown and near-
breakdown in Lanczos type algorithms. Numerical
Algorithms, 2, 133-136.

[7] Gutknecht, M. H. (1992). A completed theory of the
unsymmetric Lanczos process and related algorithms,
Part I. SIAM J. Matrix Anal. Appl., 13, 594-639.

[8] Freund, R. W., Gutknecht, M. H. & Nachtigal, N. M.
(1993). An Implementation of the Look-Ahead
Lanczos Algorithm for Non-Hermitian Matrices. SIAM
J. Sci. Comput., 14, 137-158.

[9] Graves-Morris, P. R. (1997). A “Look-around
Lanczos” algorithms for solving a system of linear
equations. Numerical Algorithms, 15, 247-274.

[10] Brezinski, C., Zaglia, M. R. & Sadok, H. (1999).
New look-ahead Lanczos-type algorithms for linear
systems. Numerische Mathematik, 83, 53-85.

[11] Liu, Q. (2008). Some preconditioning techniques for
linear systems. WSEAS Transactions on Mathematics,
7(9), 579-588.

[12] Parlett, B. N. & Scott, D. S. (1979). The Lanczos
algorithm with selective orthogonaliztion. Mathematics
of Computation, 33, 217-238.

[13] Brezinski, C. & Zaglia, M. R. (1995). Look-ahead in
Bi-CGSTAB and other product methods for linear
systems. BIT Numerical Mathematics, 35(2), 169-201.

[14] Hoffnung, L., Li, R. C. & Krylov, Q. Ye. (2006).
Krylov type subspace methods for matrix polynomials.
Linear Algebra and its Applications, 415(1), 52-81.

[15] Brezinski, C., Zaglia, M. R. & Sadok, H. (2000).
The matrix and polynomial approaches to Lanczos-
type algorithms. Journal of Computational and
Applied Mathematics, 123, 241-260.

[16] Brezinski, C. & Zaglia, M. R. (1994). Breakdowns
In The Computation Of Orthogonal Polynomials. In
Nonlinear Numerical Methods and Rational
Approximation, 49-59.

IJST (2013) 37A3 (Special issue-Mathematics): 349-358 358

[17] Brezinski, C., Zaglia, M. R. & Sadok, H. (1992). A

Breakdown-free Lanczos type algorithm for solving
linear systems, Numerische Mathematik, 63, 29-38.

[18] El Guennouni, A. (1999). A unified approach to
some strategies for the treatment of breakdown in
Lanczos-type algorithms. Applicationes Mathematicae,
26, 477-488.

[19] Brezinski, C. & Zaglia, M. R. (1994). Treatment of
near-breakdown in the CGS algorithm. Numerical
Algorithms, 7(1), 33-73.

[20] Lanczos, C. (1952). Solution of systems of linear
equations by minimized iteration. Journal of the
National Bureau of Standards, 49, 33-53.

[21] Brezinski, C., Zaglia, M. R. & Sadok, H. (2002). A
review of formal orthogonality in Lanczos-based
methods. Journal of Computational and Applied
Mathematics, 140, 81-98.

[22] Cybenko, G. (1987). An explicit formula for
Lanczos polynomials. Linear Algebra Appl., 88, 99-
115.

[23] Chihara, T. S. (1984). An Introduction to Orthogonal
Polynomials. New York, London, Paris. Gordon and
Breach.

[24] Brezinski, C. (1980). Padé-Type Approximation and
General Orthogonal Polynomials, Internat. Ser. Nuner.
Math, 50, Birkh¨auser, Basel.

[25] Draux, A. (1983). Polyńomes Orthogonaux Formels.
Application, LNM 974, Berlin, Springer-Verlag.

[26] Gutknecht, M. H. (1994). A completed theory of the
unsymmetric Lanczos process and related algorithms,
Part II. SIAM SIAMJ. Matrix Anal. Appl., 15, 15-58.

[27] Golub, G. H. & O’Leaxy, D. P. (1989) Some history
of the conjugate and Lanczos algorithms. SIAM Rev.
31, 50-102.

[28] Hestenes, M. R. (1980). Conjugate Direction
Methods in Optimization. Berlin, Springer-Verlag.

[29] Farooq, M. (2011). New Lanczos-type Algorithms
and their Implementation. PhD thesis, University of
Essex, UK. http://serlib0.essex.ac.uk/record=b1754556

[30] Farooq, M. & Salhi, A. (2014). A Switching
Approach to Avoid Breakdown in Lanczos-type
Algorithms. Applied Mathematics and Information
Sciences, to appear in Volume 8.

[31] Meurant, G. (2006). The Lanczos and conjugate
gradient algorithms, from Theory to Finite Precision
Computations. Philadelphia, SIAM.

[32] Sonneveld, P. (1989). A fast Lanczos-type solver for
nonsymmetric linear systems. SIAM J. Sci. Stat.
Comput. 10, 35-52.

[33] Taylor, D. R. (1982). Analysis of the look-ahead
Lanczos algorithm, Ph.D. Thesis, Dept. of
Mathematics, University of California, Berkeley.

[34] Brezinski, C. M., Zaglia, R. & Sadok, H. (1991).
numeralgo/na1, http://www.netlib.org/cgi-bin/search.pl.

