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Abstract 

Lanczos-type algorithms are well known for their inherent instability. They typically breakdown occurs when 
relevant orthogonal polynomials do not exist. Current approaches to curing breakdown rely on jumping over the 
non-existent polynomials to resume computation. This may have to be used many times during the solution 
process. We suggest an alternative to jumping, which consists of restarting the algorithms that fail. Three different 
strategies can be taken: (ST1) Restarting following breakdown of the algorithm in use; (ST2) pre-emptive 
restarting after a fixed number of iterations; (ST3) restarting when near breakdown is detected through monitoring. 
We describe a restarting framework with a generic algorithm that invokes one or the other of the three strategies 

suggested. Four of the most prominent recently developed Lanczos-type algorithms namely, 4 12 5 10, , /A A A B
and 

8 10/A B will be presented and then deployed in the restarting framework. However, we will only report on 

results obtained with strategy ST2 as it is the only viable one at the moment. 
 
Keywords: Lanczos algorithm; Systems of Linear Equations; Formal Orthogonal Polynomials, Restarting, 
Switching, Breakdown 

 
1. Introduction 

The Lanczos-type methods for solving Systems of 
Linear Equations (SLEs) are based on the theory of 
Formal Orthogonal Polynomials (FOPs). All such 
methods are implemented via some recurrence 
relationships between polynomials ( )kP x  

represented by Ai or between two adjacent families 

of orthogonal polynomials ( )kP x  and (1) ( )kP x  

represented by Ai and Bj as described in [1, 2]. The 
coefficients of the various recurrence relationships 
for orthogonal polynomials are given as ratios of 
scalar products. When a scalar product in a 
denominator vanishes, then a breakdown occurs in 
the algorithm and the process normally has to be 
stopped. Equivalently, the breakdown is due to the 
non-existence of some orthogonal polynomials. So 
quite an important problem is how to be able to 
continue the solution process in such a situation and 
arrive at a usable result. Several procedures for that 
purpose have appeared in the literature in the last 
few years. It has been proved that it is possible to 
jump over non-existing polynomials [3], and 
breakdown-free algorithms were thus obtained. The 
first attempt in this regard was the look-ahead Lanczos  
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algorithm [4]. Other procedures for avoiding 
breakdown are also proposed in [5-12]. The 
procedure for jumping over non-existing orthogonal 
polynomials can be described as follows:  
1. Recognize the occurrence of breakdown; 
2. Determine the degree of the next existing 
(regular) orthogonal polynomial; 
3. Find the recurrence relationship to compute it, 
i.e. jump over the non-existing orthogonal 
polynomials. 

This idea of the degree of the next regular 
polynomial or the length of the jump is explained in 
[13-19]. Note that it is not our purpose here to 
compare the advantages of these various methods. 

2. The Lanczos approach 

We consider a linear system of equations, 
 

,Ax b                                 (1) 
 

where n nA R  , n nb R   and n nx R  . 

Let 0x  and y  be two arbitrary vectors in nR  

such that 0y  . The Lanczos method [20] consists 

of constructing a sequence of vectors kx   nR  

defined as follows [21], 
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0kx x  Kk(A, r0) = span(r0,Ar0, . . . ,
1kA 

r0),        (2) 
 
rk = (b − Axk) Kk(A

T, y) = span(y, TA y, . . . 1( )T kA   y),  (3) 
 

where TA  denotes the transpose of A. 
Equation (2) leads to, 
 

xk − x0 = −α1r0 − α2Ar0 − · · · − αk
1kA 

r0.             (4) 
 
Multiplying both sides by A and adding and 

subtracting b on the left hand side gives 
 

rk = r0 + α1Ar0 + α2
2A r0 + · · · + αk

kA r0.         (5) 
 

From (3), the orthogonality condition gives 
 

( , ) 0
iT

kA y r  , for i = 0, . . . , k − 1, 
 
and, by (5), we obtain the following system of 
linear equations 
 

1 0 0 0

1 1 1
1 0 0 0

( , ) . . . ( , ) ( , )

(( ) , ) . . . (( ) , ) (( ) , )

k
k

T k T k k T k
k

y Ar y A r y r

A y Ar A y A r A y r

 

   

    


  

 (6) 

 
If the determinant of the above system is different 

from zero then its solution exists and allows us to 

obtain kx  and kr . Obviously, in practice, solving 

the above system directly for the increasing value 
of k is not feasible. We shall now see how to solve 
this system for increasing values of k recursively. If 
we set 
 

           1( ) 1 ... ,k
k kP x x x                    (7) 

 
then we can write from (5) 
 

0( )k kr P A r .                       (8) 
 

The polynomials kP  are commonly known as the 

residual polynomials. 

Another interpretation of the kP  can be found in 

[22]. Moreover, if we set 
 

0 0( , ) ( , )
iT i

ic A y r y A r           i = 0, 1,  . . . 
 
and if we define the linear functional c  on the 
space of polynomials by 
 

( )i
ic x c , i = 0, 1, . . .                                     (9) 

 
c  is completely determined by the sequence { }kc  

and kc  is said to be the moment of order k, [23]. 

Now, the system (6) can be written as 
 

( ( )) 0i
kc x P x  , for i = 0, . . . , k − 1.             (10) 

 
These conditions show that kP  is the polynomial 

of degree at most k, normalized by the condition 

(0) 1,kP   belonging to FOP’s with respect to the 

linear functional c  [23], which is briefly reviewed 
in Section 3. For more details see [24]. Such a 
family is called family of orthogonal polynomials 
with respect to the functional c and the preceding 
relations are called the orthogonality relations. 

Since the constant term of kP  in (7) is 1, it can be 

written as 
 

1( ) 1 ( )k kP x xR x   
 
where 1

1 1 2( ) ... k
k kR x x x   
     . Replacing 

x by A in the expression of kP and multiplying both 

sides by 0r  and using (8), we get 
 

0 1 0( )k kr r AR A r  , 
 
which can be written as 
 

0 1 0( )k kb Ax b Ax AR A r    , 

or 
 

0 1 0( )k kAx Ax AR A r    . 
 

Multiplying both sides by 1A , we get 
 

0 1 0( )k kx x R A r  , 
 
which shows that kx  can be computed from kr  

without inverting A. 

3. Formal orthogonal polynomials 

The orthogonal polynomials kP  defined in the 

previous section are given by the determinantal 
formula, 
 

0

1 2 1

1

2 1

1 . . .

. . .

. .

. .

. .

. . .
( ) ,

. . .

. .

. .

. .

. . .

k

k

k k
k

k

k k

x

c c

c c
P x

c c

c c

 





                       

(11) 
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where the denominator of this polynomial is (1)

kH  

[25]. Obviously, kP  exists if and only if the Hankel 

determinant (1) 0kH  , thus, 1kP   exists if and only 

if (1) 0kH  . We assume that  k, (1) 0kH  , if for 

some k, (1) 0kH  , then kP   does not exist and 

breakdown occurs in the algorithm (in numerical 
calculations the breakdown can occur even if

(1) 0kH  ). 

Let us now define a linear functional (1)c  [25] on 
the space of real polynomials as 

(1) 1
1( ) ( )i i

ic x c x c
   and let  

(1 )

kP  be a 

family of orthogonal polynomials with respect to
(1)c . These polynomials are called monic 

polynomials [25] (The polynomial in which the 
highest degree coefficient is always 1) and are 
given by the following formula: 
 

1 1

2

( 1 )

1

2 1

. . .

. .

. .

. . .

1 . . .
( ) .

. . .

. .

. .

. .

. . .

k

k k

k

k
k

k k

c c

c c

x
P x

c c

c c







                      

(12) 

 
(1) ( )kP x  also exists if and only if the Hankel 

determinant  (1) 0kH   [25], which is also a 

condition for the existence of ( )kP x . There exist 

many recurrence relations between the two adjacent 

families of polynomials kP  and (1)
kP  [25]. Some of 

these recurrence relations have been reviewed by 
Magnus, Gragg, Draux, and Gutknecht describing 
the recursions for formal orthogonal polynomials 
(FOPs) and, on the other hand, an investigation by 
Parlett and his student Taylor. See, e.g., 
Gutknecht’s survey paper [26] for a description of 
the historic development and for the exact 
references. See also [27, 28] for more details. Some 
more recurrence relations between the two families 
of orthogonal polynomials have been studied in 
[29], leading to new Lanczos-type algorithms. 

A Lanczos-type method consists of computing kP  

recursively, then kr  and finally kx  such that 

k kr b Ax  , without inverting A, which gives the 

solution of the system Ax b  in at most n steps, 

in exact arithmetic, where n is the dimension of the 
linear system.  

4. Recalling some existing algorithms 

In the following we will recall some of the most 
recent and efficient Lanczos-type Algorithms to be 
used in the restarting framework. The reader should 
consult the relevant literature for more details. 

4.1. Algorithm A12 

Algorithm A12 is based on relation A12. For details 
on the derivation of relation A12, its coefficients and 
the algorithm itself, please refer to [29]. The 
pseudo-code of Algorithm A12 can be described as 
follows. 
_________________________________________ 
Algorithm 1. Algorithm A12 

________________________________________ 
1: Choose x0 and y such that y ≠ 0, 
2: Choose ε small and positive, as a tolerance, 
 
3: Set r0 = b − Ax0, y0 = y, p = Ar0, p1 = Ap,  
     c0 = (y, r0), 
 
4: c1 = (y, p), c2 = (y, p1), c3 = (y, Ap1),  

     2
1 3 2 ,c c c    

5: 

2
0 3 1 2 0 2 1

0 0
1 0 1 0 0

1 1

, ,

, .

c c c c c c c

c c
r r p x x r

c c

 
 
 

 

   
 

6: r2 = r0 − αp + βp1, x2 = x0 + αr0 − βp, 
 
7: y1 = AT y0, y2 = AT y1, y3 = AT y2. 
 
8: for k = 3, 4,. . . , n do 
 
9: yk+1 = AT yk, q1 = Ark -1, q2 = Aq1, q3 = Ark - 2, 
10: a11 = (yk-2, rk-2), a13 = (yk-3, rk-3), a21 = (yk-1, rk-2), 
a22 = a11, 
 
11: a23 = (yk-2, rk-3), a31 = (yk, rk-2), a32 = a21,  
a33 = (yk-1, rk-3), 

12: 11
k+1 2 k 3

13

s = (y , r ), (y , r ),k k k

a
t F

a     

13: b1 = −a21 − a23Fk, b2 = −a31 − a33Fk,  
b3 = −s − tFk, 
 
14: ∆k = a11(a22a33 − a32a23) + a13(a21a32 − a31a22), 
 

15: 1 22 33 32 23 13 2 32 3 22( )_ ( )_
k

k

b a a a a a b a b a
B 


  
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16: 1 11 2 21 23

k k
13 22

b b 1
G  = ,  = ,k k k

k
k k

a B a B a G
C A

a a C G

  



, 

 
17: rk = Ak{q2 + Bkq1 + Ckrk - 2 + Fkq3 + Gkrk - 3}, 
 
18: xk = Ak{Ckxk-2 + Gkxk-3 − (q1 + Bkrk -2 + Fkrk-3)}, 
 

19: if || ||kr  , then 

 

20: kx x , stop. 

 
21: end if 
 
22: end for 
_________________________________________ 

4.2. Algorithm A4 

Algorithm A4 is based on relation A4 which is 
already considered by C. Bahuex in her PhD thesis. 
Its pseudo-code is as follows. 
_________________________________________ 
Algorithm 2. Algorithm A4 
________________________________________ 
1: Choose x0 and y such that y ≠ 0, 
2: Choose ε small and positive as a tolerance, 

3: Set 0 0r b Ax  , 0y y  

 
4: for k = 0, 1,. . . , n do 

5: 
1 1

1 1

( , )
, 1 0

( , )
k k

k
k k

y r
E for k and E

y r
 

     

6: 1 1
1

( , ) ( , )
,

( , )
k k k k k

k
k k

y Ar E y r
B

y r
 




   

7: 1
1 1

1
,k

k k

A
B E

 

 


 

8:  1 1 1 1 1 ,k k k k k k kx A B x E x r        

 

9:  1 1 1 1 1 ,k k k k k k kr A Ar B r E r        

 

10: if  1|| ||kr   , then 

 

11: 1 .T
k ky A y   

 
12: end if 
 
13: end for 
_________________________________________ 

 

4.3. Algorithm 5 10/A B  

Algorithm 5 10/A B  is based on relations A5 and 

B10, first investigated by C. Bahuex in her PhD 
thesis. Its pseudo-code is as follows. 
_________________________________________ 
Algorithm 3. Algorithm A5/B10 

 

1: Choose 0x , y and tolerance ε ≥ 0; 

 

2: Set 0 0r b Ax  , 0 0p r , 0y y , 

3: 
 
 

0 0 0
1 1

0 0

,
, 1

,

y r
A C

y Ar
    

4: 1 0 1 0r r A Ar  , 1 0 1 0x x A r  .  

 
5: for k = 1, 2, 3, . . . , n do 
 

6: 1
T

k ky A y   

7: 1 1
1 1

( , )
,

( , )
k k

k
k k k

y r
D

C y p
 

   

8: 1
1 1 1k k k k kp r D C p   

,
 

9: 1

( , )
,

( , )
k k

k
k k

y r
A

y Ap    

10: 1 1 ,k k k kr r A Ap    

 

11: 1 1 ,k k k kx x A p    

 

12: if 1|| ||kr   , then if kA  , then 

 

13: 
1

1 1 .k
k

k

C
C

A
  

 
14: end if 
 
15: end for 

 
4.4 Algorithm A8/B10: The pseudo-code of A8/B10 is  
as follows. 
_________________________________________ 
Algorithm 4 Algorithm A8/B10 

1: Choose x0 and y such that y ≠ 0. 
 

2: Set 0 0r b Ax   

 

3: 0 0z r  
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4: 0y y  

 
5: for k = 0, 1, 2, . . . ,n do 
 

6: 
1

( , )
,

( , )
k k

k
k k

y r
A

y Az    

 

7: 1 1k k k kr r A Az  
,
 

 

8: 1 1 ,k k k kx x A z    

 

9: if 1|| ||kr   then 

 

10: 1 ,T
k ky A y   

 

11: 1
1

1

1
,k

k

C
A



  

 

12: 
1

1 1 1 1
1

( , )

( , )
k k k

k
k k

C y r
B

y Az
  

   , 

 

13: 1 1
1 1 1 1 .k k k k kz B z C r      

 
14: end if 
 
15: end for 
_________________________________________ 

5. Restarting an algorithm as a way to remedy 
the breakdown problem 

When a Lanczos-type algorithm fails, it is due to 
the non-existence of some coefficients of the 
recurrence relations on which the algorithm is 
based. The iterate which causes these coefficients 
not to exist does not cause and should not 
necessarily cause any problem when used in 
another Lanczos-type algorithm, based on different 
recurrence relations. It is therefore obvious that one 
may consider switching to another algorithm when 
breakdown occurs [30]. This means that it is 
possible to remedy breakdown by switching. It is 
also the case that the iterate generated by a 
Lanczos-type algorithm that causes it to fail can be 
used to initialize the same algorithm successfully. 
This allows the algorithm to work in a Krylov space 
with a different basis. It is therefore also possible to 
remedy breakdown by restarting. 

 

5.1. Restarting strategies 

They follow the same pattern as switching [30], 
except that here, the alternative algorithm to switch 
to is the same as the one we started with. This 
means that, by re-initializing the Lanczos process 
with another iterate, the last one found starts 
working with a different Krylov space base. This is 
enough to fix any numerical difficulties that have 
occurred and avert any that might occur. Different 
strategies can be adopted for restarting different 
algorithms. These are as follows. 
1. Restarting after breakdown: Start a particular 
Lanczos algorithm until a breakdown occurs, then 
restart the same Lanczos algorithm, initializing it 
with the last iterate of the failed algorithm. We call 
this strategy ST1. 
2. Pre-emptive restarting: Run a Lanczos-type 
algorithm for a fixed number of iterations, halt it 
and then restart it, initializing it with the last iterate. 
Note that there is no way to guarantee that 
breakdown would not occur before the end of the 
interval. This strategy is called ST2. 
3. Breakdown monitoring: Provided monotonicity 
of reduction in the absolute value of denominators 
involved in the coefficients of the polynomials 
involved can be established, breakdown can be 
monitored as follows. Evaluate regularly those 
coefficients with denominators that are likely to 
become zero. Restart the algorithm when the 
absolute value of any of these denominators drops 
below a certain level. This is strategy ST3. 

5.2. A generic restarting algorithm 

Suppose we have a set of Lanczos-type 
algorithms and we want to use one of these 
algorithms in the restarting framework using one of 
the above mentioned strategies ST1, ST2 or ST3. 
Then the following algorithm can be used. 
_________________________________________ 
Algorithm 5 Generic restarting algorithm 

1: Start the most stable algorithm, if known. 
 
2: Choose a restarting strategy from {ST1, ST2, 
ST3}. 
 
3: if ST1 then 
 
4: Continue with current algorithm until it halts; 
 
5: if solution is obtained then 
 
6: Stop. 
 
7: else 
 
8: restart the same algorithm; 
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9: initialize it with current iterate, 
 
10: Go to 4. 
 
11: end if 
 
12: else if ST2 then 
 
13: Continue with current algorithm for a fixed 
number of iterations until it stops; 
 
14: if solution is obtained then 
 
15: Stop. 
 
16: else 
 
17: restart the same algorithm, 
 
18: initialize it with the current iterate, 
 
19: Go to 13. 
 
20: end if 
 
21: else 
 
22: Continue with current algorithm and monitor 
certain parameters for breakdown, until it halts 
 
23: if solution is obtained then 
 
24: Stop. 
 
25: else 
 
26: restart the same algorithm, 
 
27: initialize it with current iterate, 
 
28: Go to 22. 
 
29: end if 
30: end if 

 
Note that we have only considered strategy ST2 in 

this paper. Strategy ST1 is not going to be efficient 
because a breakdown causes the programme to halt. 
This requires restarting it by hand. Since this occurs 
rather frequently, particularly in high dimensions, it 
is not practical to carry out experiments in this case. 
Strategy ST3 is not implemented since it is clear 
that it will not be efficient, at least in the sequential 
environment we are operating in. Looking at 
algorithms A4, A12, A5/B10, and A8/B10 given earlier, 
one notices easily that they involve identifying the 
coefficients of FOP’s used in the Lanczos process. 

Many of these coefficients are ratios. It is the 
denominator quantities of these ratios that have to 
be monitored in ST2. There may be a lot of them 
and there is no obvious way to see which one is 
decreasing alarmingly and threatening to cause 
breakdown. There is a serious amount of work yet 
to be done to understand how these coefficients 
behave in order to find which ones should be 
monitored closely. It is also reasonable to assume 
that, in a parallel environment many can be 
monitored simultaneously, not in a sequential 
environment. For these reasons, we have only 
investigated strategy ST2. In the following, a 
generic algorithm implementing ST2 is given. Note 
that a convergence tolerance ε = 1.0e-013 and 20 
iterations per cycle are used in all experiments. 

5.3. Implementing ST2 

ST2 takes as input a given algorithm from a pre-
specified list. Here, these algorithms are the ones 
already listed above, i.e. A4, A12, A5/B10, and A8/B10. 
Depending on whether the algorithms are of the Ai-
type (i.e. Lanczos-type algorithm based on a single 
recurrence relation) or Ai/Bj-type (i.e. Lanczos-type 
algorithm based on two recurrence relations), 
initialisation has to be done differently; Ai-type 

requires x0, 0 0r b Ax   and 0y y , and Ai/Bj- 

type requires 0x , 0 0r b Ax   and 0y y  as 

well as 0 0z r . The general ST2 algorithm can be 

described, therefore, as follows. 

5.3.1. Algorithm ST2 

_________________________________________ 
Algorithm 6 ST2 restarting algorithm 

 
1: Choose algorithm ALG from {A4, A12, A5/B10, A8/B10}  
 
2: Choose x0 and y such that y ≠ 0, 
 

3: set 0 0r b Ax  , 0y y , 

 

4: if  4 12ALG A ALG A    then 

 

5: 0 0z r ; 

 
6: end if 
 
7: run ALG for a fixed number of iterations (a 
cycle) or until it halts; 
 
8: if solution is obtained then 
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9: stop; 
 
10: else 
 
11: initialize it with the current iterate; 
 
12: go to 3; 
 
13: end if 

5.3.2. Numerical results 

Algorithms 1, 2, 3, 4, and algorithm ST2 
restarting each one of them [17] has been 
implemented in Matlab and applied to a number of 
small to medium size problems for different values 
of δ. The test problems we have used arise in the 5-
point discretisation of the operator 

2 2

2 2x y x
  

  
  

 on a rectangular region. We 

refer to them as the Baheux-type problems since we 
borrowed them from her PhD thesis. These 
problems are important because they represent the 
typical SLE’s that crop up in the real world. They 
are also used by Baheux herself to test three of the 
algorithms used here. Comparative results are 
carried out on instances of size ranging from n = 20 
to n = 4000 of the problem Ax b  with A and b
as follows 
 

... ... 0

:

: .. .. ,

:

0 ... ...

B I

I B

A

B I

I B

 
  
 
 

 
  

 

 
with 
 

4 ... ... 0

4 :

: .. ..

: 4

0 ... ... 4

B


 

 


 
 
 
 
 
 
 
 

 

 
and 1    , 1    . The parameter δ 

takes values 0.0, 0.2, 5 and 8 respectively. The right 

hand side b is taken to be b AX , where 

(1,1,...,1)TX  the solution of the system is. The 

dimension of B is 10. When δ = 0, the coefficient 
matrix A is symmetric and the problem is easy to 
solve because the region is a regular mesh [31]. For 
all other values of δ, the matrix A is non-symmetric 
and the problem is comparatively hard to solve as 
the region is not a regular mesh.  
 

The results obtained with algorithms 

4 12 5 10, , /A A A B and 
8 10/A B  executed with the ST2 

restarting each one of them, for different values of δ 
on Baheux type problems, are recorded in Tables 1, 
2, 3 and 4 below. The results show that the 
restarting algorithm ST2 is far superior to any one 
of the algorithms considered individually. 

5.3.3. Comments on the numerical evidence 

We have implemented 4 12 5 10, , /A A A B and 

8 10/A B to solve a number of problems of the type 

described in Section 5.3.2 with dimensions ranging 
from 20 to 4000. The results are compared against 
those obtained by the restarting strategy ST2 used 

on each one of the algorithms 4 12 5 10, , /A A A B and

8 10/A B , on the same problems. They show that 

algorithms 4 12 5 10, , /A A A B and 
8 10/A B are not as 

robust as when they are restarted in a preemptive 
fashion (under ST2). Outside the restarting 
framework, the algorithms failed to solve any of the 
problems for dimensions greater than 40. Within 
the restarting framework, all problems have been 
solved with high precision. This is recorded in 
Table 1 through Table 4. The results, undoubtedly 
point to restarting as another way of curing 
breakdown in Lanczos-type algorithms. 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 



 
 

IJST (2013) 37A3 (Special issue-Mathematics): 349-358                                                                                                                              356 
 

Table 1. Numerical results for δ = 0 
 

Dim of Prob ST2(A4) ST2(A12) ST2(A5/B10) ST2(A8/B10) 

n | | | |kr  T(s) | | | |kr  T(s) | | | |kr  T(s) | | | |kr  T(s) 

20 
40 
60 
80 

100 
200 
400 
600 
800 
1000 
2000 
3000 
4000 

3.8545e-014 
6.0376e-014 
8.8041e-014 
9.8201e-014 
2.6273e-014 
7.5106e-014 
8.2317e-014 
8.9464e-014 
8.5604e-014 
8.7519e-014 
8.3024e-014 
9.9026e-014 
9.2511e-014 

0.0010 
0.0043 
0.0125 
0.0140 
0.0193 
0.0803 
0.5170 
0.9418 
1.5466 
2.4005 
9.3332 
24.8801 
48.0754 

8.4317e-014 
7.7873e-014 
3.8138e-014 

6.1219e-014 
9.4670e-014 
6.1319e-014 
9.0230e-014 
9.6683e-014 
8.8581e-014 
8.4853e-014 
5.5149e-014 
9.4196e-014 
6.0811e-014 

0.0075 
0.0126 
0.0161 
0.0205 
0.0216 
0.0931 
0.4105 
2.0031 
3.2419 
4.7680 
21.6685 
56.1770 
113.4374 

1.8157e-014 
2.2438e-014 
2.3873e-014 
7.9308e-014 
2.4008e-014 
9.9663e-014 
8.0372e-014 
9.7269e-014 
9.9864e-014 
9.6715e-014 
7.8361e-014 
8.7229e-014 
7.8230e-014 

0.0050 
0.0102 
0.0127 
0.0163 
0.0161 
0.0652 
0.9814 
2.9632 
5.8682 
8.7822 
20.4821 
61.0065 
141.9979 

8.0535e-014 
7.4281e-014 
6.6555e-014 
7.1708e-014 
7.5103e-014 
7.6984e-014 
9.1328e-014 
6.9507e-014 
9.7003e-014 
9.2346e-014 
8.2291e-014 
9.3587e-014 
9.1120e-014 

0.0076 
0.0135 
0.0214 
0.0220 
0.0227 
0.0705 
0.7058 
2.1481 
4.7235 
8.5468 
39.4606 
103.5353 
176.2555 

 
Table 2. Numerical results for δ = 0.2 

 

Dim of Prob ST2(A4) ST2(A12) ST2(A5/B10) ST2(A8/B10) 

n | | | |kr  T(s) | | | |kr  T(s) | | | |kr  T(s) | | | |kr  T(s) 

20 
40 
60 
80 
100 
200 
400 
600 
800 

1000 
2000 
3000 
4000 

9.9896e-014 
4.9296e-014 
6.0957e-014 
5.7129e-014 
5.3007e-014 
2.2236e-014 
9.0428e-014 
6.6926e-014 
8.6281e-014 
9.0327e-014 
7.7193e-014 
8.1792e-014 
8.9238e-014 

0.0084  
0.0191 
0.0210 
0.0250 
0.0305 
0.0980 
0.4163 
1.0532 
1.5170 
2.1245 
8.0167 
19.2173 
36.0361 

8.9978e-014 
5.1552e-014 
5.5319e-014 
9.2631e-014 
9.4369e-014 
9.9659e-014 
8.5500e-014 
9.2957e-014 
4.8311e-014 
8.1326e-014 
9.1597e-014 
9.1855e-014 
9.8884e-014 

0.0130 
0.0292 
0.0328 
0.0388 
0.0440 
0.1485 
0.3117 
1.1802 
1.8420 
3.3795 
12.8866 
45.6061 
74.3756 

5.0531e-014 
8.7027e-014 
5.4364e-014 
9.1910e-014 
3.2209e-014 
5.8291e-014 
8.0768e-014 
6.9817e-014 
8.2814e-014 
9.8567e-014 
9.3404e-014 
6.1042e-014 
9.2065e-014 

0.0108 
0.0205 
0.0280 
0.0362 
0.0392 
0.0851 
0.5826 
2.4674 
3.2158 
7.8925 
33.4418 
123.3084 
280.4058 

6.1999e-014 
5.2118e-014 
7.2870e-014 
3.5101e-014 
7.0508e-014 
6.1683e-014 
8.2751e-014 
9.9801e-014 
7.1025e-014 
7.8650e-014 
8.1368e-014 
8.2046e-014 
8.0349e-014 

0.0137 
0.0240 
 0.0314 
0.0410 
 0.0431 
0.1164 
 0.7639 
2.0367 
4.7437 
8.1761 
30.7758 
89.0659 
180.6880 

 
Table 3. Numerical results for δ = 5 

 

Dim of Prob ST2(A4) ST2(A12) ST2(A5/B10) ST2(A8/B10) 

N | | | |kr  T(s) | | | |kr  T(s) | | | |kr  T(s) | | | |kr  T(s) 

20 
40 
60 
80 

100 
200 
400 
600 
800 
1000 
2000 
3000 
4000 

1.2543e-014 
6.7523e-014 
2.9307e-014 
6.9125e-014 
6.9001e-014 
5.4021e-014 
6.9921e-014 
2.6118e-014 
4.5923e-014 
4.5632e-014 
9.8816e-014 
7.1675e-014 
7.9284e-014 

0.0110 
0.0442 
0.0524 
0.0634 
0.0707 
0.1661 
0.4889 
0.9507 
1.9086 
3.0028 
9.4847 
37.2835 
60.0409 

2.1773e-014 
4.5708e-014 
9.5280e-014 
4.0822e-014 
6.7233e-014 
7.2644e-014 
9.8208e-014 
9.4438e-014 
8.6228e-014 
9.1161e-014 
8.0887e-014 
7.1249e-014 
6.0671e-014 

0.0168 
0.0691 
0.1127 
0.0909 
0.1195 
0.1957 
1.0148 
1.2438 
1.9261 
5.6501 
32.3405 
66.3288 
118.7937 

1.6184e-014 
9.8328e-014 
6.4059e-014 
3.3983e-014 
9.3530e-014 
9.1453e-014 
9.2802e-014 
9.9646e-014 
5.7573e-014 
9.9696e-014 
9.1481e-014 
8.5008e-014 
8.1534e-014 

0.0133 
0.0556 
0.0573 
0.0766 
0.0846 
0.1553 
0.8543 
2.1217 
4.0326 
6.1502 
29.4155 
81.7649 
173.6725 

5.8176e-014 
8.3294e-014 
7.5235e-014 
9.7386e-014 
8.6400e-014 
9.2653e-014 
5.7742e-014 
9.0410e-014 
9.9560e-014 
8.7909e-014 
5.2993e-014 
6.3973e-014 
5.1241e-014 

0.0159 
 0.0466 
 0.0584 
0.0759 
0.0914 
0.1747 
0.8976 
1.6980 
3.2380 
6.6809 
29.2111 
85.8018 
145.5099 
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Table 4. Numerical results for δ = 8 
 

Dim of Prob ST2(A4) ST2(A12) ST2(A5/B10) ST2(A8/B10) 

n | | | |kr  T(s) | | | |kr  T(s) | | | |kr  T(s) | | | |kr  T(s) 

20 
40 
60 
80 

100 
200 
400 
600 
800 
1000 
2000 
3000 
4000 

1.2127e-014 
9.1661e-014 
6.2183e-014 
9.5772e-014 
8.9719e-014 
9.7792e-014 
6.3091e-014 
9.5208e-014 
7.7096e-014 
9.8712e-014 
8.6980e-014 
7.8024e-014 
6.6516e-014 

0.0116 
0.0403 
0.0782 
0.0750 
0.0729 
0.1528 
0.3592 
1.0349 
1.9936 
4.8990 
13.9378 
42.6996 
115.1201 

9.9725e-014 
8.8142e-014 
8.2240e-014 
6.8254e-014 
9.2600e-014 
5.7848e-014 
9.0009e-014 
9.7036e-014 
2.4209e-014 
9.4187e-014 
5.5222e-014 
7.5285e-014 
9.2836e-014 

0.0162 
0.0727 
0.0928 
0.0893 
0.1520 
0.2396 
0.5326 
1.5674 
4.2043 
5.2569 
29.6383 
73.6804 
159.9751 

7.6040e-014 
2.1073e-014 
9.1420e-014 
6.1842e-014 
9.5086e-014 
6.8288e-014 
6.1809e-014 
4.1802e-014 
6.2004e-014 
3.8734e-014 
9.4111e-014 
4.5003e-014 
6.7992e-014 

0.0132 
0.0601 
0.0783 
0.0974 
0.1059 
0.1784 
0.9791 
2.7026 
4.9577 
7.3104 
36.2889 
84.8624 
179.9848 

6.4653e-014 
6.9719e-014 
2.4335e-014 
6.4862e-014 
5.3579e-014 
6.4354e-014 
9.7548e-014 
4.8723e-014 
9.3335e-014 
8.7525e-014 
6.8768e-014 
7.9196e-014 
8.6748e-014 

0.0121 
0.0547 
0.0671 
0.0933 
0.1075 
0.2528 
1.1240 
2.3533 
4.6741 
7.1334 
38.3224 
100.3153 
228.4823 

 

6. Conclusion 

The restarting strategy ST2 considered seems to be 
very successful at remedying and avoiding 
breakdown in Lanczos-type algorithms. The 
supporting numeral evidence is very strong in this 
respect. Indeed, restarting solved all problems up to 
dimension of 4000 while individual algorithms only 
managed to solve them for lower dimensions (≤ 
40). The cost of preemptive restarting is not 
substantial. In the case of monitoring the 
coefficients that can vanish, although the cost is 
only that of a test of the form if |denominator value| 
≤ tolerance then stop, many such tests may be 
carried out. We have not measured its impact on the 
overall computing time. Positive experimental 
results point to restarting as a significant approach 
to avoiding breakdown in solving SLE’s by 
Lanczos-type algorithms. This idea is not only 
different from existing strategies for dealing with 
breakdown, [32-34], but also quite easy to 
understand and follow. However, it remains for 
some more extensive testing to be done on both 
large real and randomly generated problems to fully 
understand the behavior and cost of the restarting 
approach compared to state-of-the-art Lanczos-type 
algorithms with in-built precautions to avoid 
breakdown such as MRZ and BSMRZ. Further 
work is being expanded in this direction. 
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