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Abstract

Equality of hh -curvatures of the Berwald and Cartan connections leads to a new class of Finsler metrics, so-
called BC-generalized Landsberg metrics. Here, we prove that every BC-generalized Landsberg metric of scalar
flag curvature with dimension greater than two is of constant flag curvature.
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1. Introduction

Unlike Riemannian geometry, there are four well-
known connections in Finsler geometry: Berwald,
Cartan, Rund (Chern) and Hashiguchi connection,
which are extensions of the Levi-Civita connection
in Reimannian geometry. A connection in Finsler

geometry is considered as a triple (Fijk, N/ ,Vijk)

which consists of horizontal Christoffel symbols,
non-linear connection coefficients and vertical
Christoffel symbols.

One of the important and rich classes of Fisnler
metrics is the class of Landsberg metrics. There are
various ways to define this kind of Finder metrics
[1]. A Landsberg metric can be defined by the
requirement that the horizontal Christoffel symbols
of Berwald and Rund connections be equal. The
counterpart of sectional curvature of Riemannian
manifolds for Finderian manifolds is called flag
curvature. Finder metrics of constant flag curvature
are of main interest in both mathematics and
physics. In [2], Bgancu and Farran introduced a
generalization of Landsberg metric and called it
Generalized Landsberg metric (GL-metric). A GL-
metric is a Finder metric for which the hh-
curvatures of Berwald and Rund connections are
the same. Bgancu and Farran proved that every
GL- metric of scalar flag curvature with dimension
greater than two is of constant flag curvature [2].

It is well known that Landsberg metrics can aso
be defined by the requirement that the horizontal
Christoffel symbols of Berwald and Cartan
connections be equal. Here, we introduce a new
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generalization of Landsberg metrics and call it BC-
generalized Landsberg metric. A Finsler metric is
caled a BC-generalized Landsberg metric if the

hh - curvatures of Berwald and Cartan connections
coincide. Every Landsberg metric is a BC-
generalized Landsberg metric. However, the
converse is an open problem. Landsberg metrics
and their generalizations which are of scalar flag
curvature has been studied extensively [3-5].
Numata's well-known theorem states that every

Landsberg metric F"(n>3) of non-zero scalar

flag curvature is a Riemannain metric of constant
sectional curvature [6]. Then, in [2] Numata's
theorem is extended to GL-metrics. Here, we prove
a modified version of Numata's theorem for BC-
generalized Landsberg metrics. More precisely, we
have the following theorem.

Theorem 1. Suppose that F"(n>3) is a BC-
generalized Landsberg metric of scalar flag
curvature. Then F isof constant flag curvature.

As Matsumoto pointed out in [7], every GL-metric
is a stretch metric and consequently the main
theorem of [2] follows from Shibata's theorem
which states that every stretch metric of non-zero
scalar flag curvature with dimension greater than
two is a Riemannain metric of constant sectional
curvature. However, a BC-generalized Landsberg
metric need not be a stretch metric.

2. Preliminaries

In this section, mainly background material is
presented about the basic tools and notations. Let

M be ann-dimensional smooth manifold. The
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tangent space at X M is denoted by T,M and

the tangent bundie of M by TM . Each element
of TM has the form (X,Y), where Xe M and

yeT M. Let TM,=TM \{0}. The natural
projection 7 : TM — M isgivenby 7(X,Y) = X.
The pull-back tangent bundle T (Tl\/l) is a vector
bundle over TM, whose fiber 7 v(TM)at
veTM, is jut T,M where 7z(V)=X. Thus
7 (M) ={(x,y,V) | yeTM\{0},veTM,}.

A Finder metric on a manifold M is a function
F :TM —[0,+00) with the following properties:

(i) FisC” on TM,,

(i) F(x,Ay) = AF(x,y) VA>0,
(iii) For any tangent vector, the vertical Hessian

given by
1,
s3],

is positive definite.
A symmetric tensor C is defined by

cuyV W).:Cijk (Yl VW,
whee U =U"-2 V =Viai. and

8 x
W =W 7 is caled Cartan tensor. Further, let

I, = 9"C;, . Then |l is called mean Cartan tensor.

Theorem 2. ([1]) For a Finder metric F , the
following are equivalent
a) C=0,
b) 1=0,
¢) F isRiemannian.

Asymmetric tensors L on 7z (TM) is defined as
follows

LUV W):=L (y)UV Wk

where Ly, =Cjy Yy in which '|[" denotes the
horizontal covariant derivative with respect to
Cartan connection. L is called Landsberg tensor.

Definition 3. A Finsler metric is called a Landsberg
metricif L=0.

A globa vector field G is induced by F on
TM,,. This vector field in a standard coordinate

(x',y") for TM , isgiven by

0
G= y 8_'_26 (X, Y)

where G' (X,y) are local functions on TM,
satisfying G' (X, Ay)=AG' (X,y) A>0.
G iscalled the associated spray to (M, F).

The notion of Riemann curvature for Riemann
metrics can be extended to Finder metrics. For a

non-zero vector Y €T,M,, the Riemann
curvature R, :T, M —T, M isdefined by

i o
Ry(U)ZRk(Y)UkaX—i
where
()28 __OCj g GG GG
S Ty T Yy oy
. i GG'
G - iﬁ i G, =1

Suppose that P =T, M (flag) is an arbitrary
planeand y € P (flag pole). The flag curvature
K(P,y) is defined by

R
K (Poy) g, (R, ())
gy(yay)gy(vav)_gy(vay)gy(vay)
where V is an arbitrary vector in P such that
P =span(y.v).
F is said to be of scalar flag curvature, if for a
non-zero vector Yy e P, K(P,y)=A(Yy)

independent of P, or equivalently,
R, =Ay)F (Y}l -9, (y,)y}, yeT,M, xeM
where | :T,M —T, M denotes the identity map

and gy(y,.)=%[F2]yi dx' . Fisalso said to be of

constant curvature A if the above identity holds for
aconstant A [3, 4].

Definition 4. A Finsler metric F is said to be BC-
generalized Landsberg metric, if the Riemannian
curvatures of Berwald and Cartan connections
coincide.

Remark 2. Every Landsberg metric is a BC-
generalized Landsberg metric, but the converse is
an open problem.

Let F;" denote the horizontal Christoffel symbols
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of the Cartan connection of Finsler metric F and
0 .0
OX oy’
We know that the hh-curvature of Berwald,
Chern and Cartan connections are given by the
following, respectively

Hb =6.G)+GIGh —(j|k) @
Kf =6 F+F Fi—(jilk) @

where R?k = 5kG;1 —51-61? and (] |K)means
interchange then subtract. It is easy to see that

Hij = Kij+ Wi - C R} ®)
Ri = Hii + Wi “)

where VV,JT( ={ L:}”k + L Lo = (i 1K)} + Cj R
(for more details see [2]).

By definition, a Finder metric is a BC-
generalized Landsberg metric if and only if

V\/ijT( = 0. Itiswell known that a Finsler metric F
is a Landsberg metric if and only if the horizontal
Christoffel symbols of the Cartan and Berwald
connections coincide [8]. Therefore, if F is a

Landsberg metric, then R:‘k = Hi?k and

consequently WjT( =0. Thus the class of Finser

I
metrics with vanishing VV”T( isarich class.

In Finder geometry, in general, geometric objects
depend both on position and direction. In [9] and
[10], Basco, Matsumoto and Szilasi studied Finsler
metrics with some important tensors such as hh-
curvatures of Berwald, Rund and Cartan
connections depending only on position. Here, we
consider a Finder metric whose hh -curvature of

the Cartan connection depends only on position.
More precisely, we have the following.

Proposition 5. Suppose that the hh -curvature of
the Cartan connection of a Finder metric

F depends only on position. Then F is a BC-
generalized Landsberg metric.

Proof: It is well known that the hh-curvature of
Cartan connection satisfies the following

0
yl 8_y|(Rtlh) :\Nuth- ®)

Now, suppose that the hh-curvature of the

Cartan connection of a Finser metric F depends
only on position. Then, by (5), one can get

R;‘k =H i?k . This completes the proof.

3. Proof of Theorem 1

First, werecall the following proposition.

Proposition 6. ([8]) Suppose that Finsler metric
F isof scalar flag curvature K (X, y).Then

R]k:thj_thk’ (6)

where K; = FK/, +;F22;/< and Ry, = gthrll-

We assume that VV”T( = 0. Taking into account the
symmetric and  anti-symmetric  parts  of
Wi = 9 Wi =0 in h and k, we see that the

vanishing of the tensor W,;,, is equivalent to the
following equations

ijr Lirh - thr Lirk =0, ()

Lijhllk - Lijk||h + C.,-r R, =0. 8)

On the other hand, the hh-curvature of Cartan
connection satisfies the following

Rtkh = R»ih/i + Rt«Cirh - thw Cirk

. . 9)
+ L Ly — Lo Ly + Ltih||k - Ltik||h’

where '/" denotes the vertical covariant derivative
with respect to Cartan connection [11].

Using therelations g, = dy; =0, weget

9y Revi = R - (10)

Contracting (9) with g, implies that

Rikn = Rii + Rjerirh - thrCirk + Ly L

: (12)
- ijr Lih + Ljih||k - Ljik||h’

Sincewe have Ry, + Ry, = 0, then (1) yields

Rjkh/i + F\)kh/j = _Rjerirh - ererh

r r r (12)
+ Ry, Gy + R Ci + 2R, C

rij !
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and by definition of the '/°

0

— o) =4R,.C,,
oy 7 (Rin) = 4R,

+(thr - jl’h)'CI:( +(th - Rrh)Cl;

( ]kh)+ (13)

Contracting (13) with yk and using the relations
Ciy“=Cy“ =0, weget

0
Y — (Ryy )+ (Rkhy ) "
—Rin—Rjn = 4F\’thijr yX.

Suppose that F is of scdar flag curvature

K(X,y). Then, by using Proposition 6, the
equation (14) can be rewritten as follows

9 (F°kn )=2Frkh, +F> XK
8y| jh | jh

= FK(2¢,h, —h,

— FK(£,h, —h,?

—h, +F?K(2C,,

346
0 2 0 2
ﬁ(F Khjh)+W(F Khh):hthi _hjiKh (15)
+h,K, —h K, +4C, F*KNR.
Note that, we have
C,h =C,0,-C,t'¢, =C, (16)

Now, we simplify the term %(FZKhjh)as

follows

=~y +hit )

éh—wj)+2F2quh+F22§h

£,)+2F?KC,, +3K h, —3FK/ h,

=—FK(¢,h, +¢,h; +2,h;)+2F?KC,,, +3K . (17)

Similarly

oy (F Kh,) =—FK(/;h, + 4R, + 2, h“) 8)

+2F? KC;i, +3K h,.

Plugging (16), (17) and (18) into (15) implies that

(K; —=FKZ)h, + (K, —FKZ)h;
+(K, ~FKZ)h, =0, 0o
Contracting (19) with gji , We get
(n+1)(K,-FK?,)=0, (20)
and consequently
Kh—Fthngzg:f 0, (21)

which implies that K = K(X) is isotropic. Now,
the proof follows from Schur’s lemma.

By Proposition 5, if hh-curvature of Cartan
connection depends only on position, then

V\/ij'; = 0. Thus, we have the following.

Corollary 7. If hh-curvature of the Cartan
connection depends only on position and

F"(n>23) is of scalar flag curvature, then F is
of constant flag curvature.
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