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Abstract

In this paper, we propose a new method for solving the stochastic advection-diffusion equation of Ito type. In this
work, we use a compact finite difference approximation for discretizing spatial derivatives of the mentioned
equation and semi-implicit Milstein scheme for the resulting linear stochastic system of differential equation. The
main purpose of this paper is the stability investigation of the applied method. Finally, some numerical examples
are provided to show the accuracy and efficiency of the proposed technique.
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1. Introduction

In recent years, there has been interest regarding the
study of stochastic partial differential equations
(SPDEs). SPDEs can describe the dynamics of
stochastic  processes defined on  space-time
continuum. These eguations have been widely used
to model many applications in engineering and
mathematical sciences.

Analytical solution can be obtained for very few
SPDEs and some authors have studied them
theoreticaly [1-4]. One hope is that using
numerical methods to generate solutions to such
equations will lead to better understanding of the
equations. For numerical simulation of solution of
SPDEs, some authors have used the finite element
approximation [5-7] and others have used finite
difference scheme for approximation solution of
SPDE's. Roth used an explicit finite difference
method to approximate the solution of some
stochastic hyperbolic equations [8]. Soheili et al.
presented two methods for solving linear parabolic
SPDE's based on the Saul'yev method and a high
order finite difference scheme [9].

Kamrani and Hosseini reported explicit and
implicit finite difference method for general SPDE
[10]. Some authors used spectral method for spatial
variable discertization and solved the resulting
system of SODE viathe Crank-Nicolson scheme or
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stochastic Runge-Kuttamethod [11, 12]. The
Wiener Chaos expansion is another method that we
can use for the solution of SPDES[13].

In this paper, we consider the one dimensional
stochastic advection-diffusion equation:
u, (x,t) = au, (X,t) + pu, (x1)

+ou(x, HW(t)

u(Xtp) = Uy(X) (1)
u(0,t) = f,(t), u(X,t) = f,(t),

where te[t,,T], xe[0,X].In Eq(1) «>0,4,0
are constants and W/(t) is arandom noise which is

related to the Brownian motionW/ (t) .
Equation(1) can be rewritten as:

u(xt) = u(x,0) + j;(auxx(x, 9+ fu (x9)ds
+ j;au(x, s) dW(s) .

The stochastic integral is the Ito-integral with
respect to  R'-valued Wiener  process
(W(t), ) o defined on acomplete probability

space (QQ, F, P), adapted to the standard filtration
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(Ft )te[O,T] '

The outline of this paper is as follows: in section
2, we state a compact finite difference scheme for
discretizing spatial derivatives of stochastic partial
differential equation and a stochastic differential
system is obtained. In section 3, the semi-implicit
Milstein method is applied for this system. In this
section we investigate stability of this method under
an important theorem. Finally, in the last section,
numerical examples are presented.

2. Compact finite difference for stochastic
advection-diffusion equation

In this section, we introduce the standard compact
approximations for the spatial derivatives of Eq(1).
Consider the following differential equation:

au, +pu +ouW(t) = f(x) ,xe[0, X]. (2

If we denote the central difference scheme of
order two for second and first order derivatives of
uas

Uy — 20 +U su =Jin
AX?

5x2ui = T T Aal
2AX

respectively, then we obtain the following
approximation for Eq(2) at point X :

adu, + Bou +ouW (t)-r, =f, ©)

AX® , du o%u

inwhichy = — (g —+28—). .
nE Ty @t

In order to obtain a higher order scheme, the
fourth and third derivatives of U can be
approximated [14, 15]:

0%u 1 -
O L pu o),
OX a
=2 (f, = 5,u, —ouW)
a
3
T =15 g, —ouM),
OX o
~ L 6,1, - pou, — o5 uM)
(04
o'u. 1 .
AA i:_(fxx_ﬂuxxx_auxxw)i
OX o

~ 1( 51, —é(éx f. — fo2uU, —o5,uW)
a a
—o52u\W ).
We substitute the above implicationsin Eq(3) :

ad?u, + O U, +ouW(t) (4)

2
2ot ~L 5,8, - pozu, —os,uM)
12 a

— oSUW} + 2%{5x f, - 52, — oS uW}] = f
Eq(4) can be rewritten as:
ad’u + S, + ouW(t) )

2 2
B 52y + L s Wi - o5Pu W
12 "« a

2 2
2P sy —2L s uw = £+ 2 (28
a a 12

L5t 2l51).
a a

X
For an integer positive M , if AX:M and

At denote the spatial step size and time step size,
respectively, so we define:

i=01,...,M
i=0,12,....

X; = | AX
t, = j At

In order derivative of high-order difference
algorithm, we must discrete Eq(1) in space at point

X, according to Eq(5) to obtain a system of
stochastic differential equation as follows:

2
[ a2+ p_p —’BGAXW+£W]UH+
AX® 12a 2Ax 24« 12
2
[§U\N—2—Oé—ﬁ— u 6)
6 AX® 6o
2

+[ a2+ p_p —’BUAXWJrEW]ui+1

AX* 12a 2AX 24a 12
.1 pAx, . 5. 1 pAX
- ___] i-1 =t

+= ui + ] ui +1
12 24¢ 6 12 24¢

Let the boundary conditions be homogeneous, then
our system can be written as:

AU’ = (B+cWAU, @)
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in which A and B are tridiagonal matrices as
follows:

eripl A 5 1 Ax
12 240 6 12 24«

B=Tri[Z,,%,,%,]

where
a  p* B
1= 2t T o0
AX®  12a  2AX
22 B
z NG
a BB
T AXE 120 2AX
and

U= [ul(t)v"'!uM—l(t)]T
U =[U0),... Uy L

Theorem 1. The matrix A isinvertible.
proof: see[14].

Therefore we can have the following stochastic
system:

U'=(A'BU +oW(t)U . 6)

Before proving the main theorem, we state the
following lemma:

b> _ ,.6
Lemmal If — =¢os™(=),0<0 < r, then
4ac 2

2b? — 4ac + 2b\/b? — 4ac

4ac

=cos(f) +isin(b).

proof: see[14].

Theorem 2. All eigenvalues of C= A'B have
negative real-parts.

proof: Let A and © be eigenvadue and
correspondingeigenvector of C, respectively. So

we have A'Buo=Av o Bu=Alv. We
rewrite thisimplication as follows:

(Bix—AA v, +(B; —2A )y,

_ 9)
+(B s —4A )0, =0

Let
a=B,;;,—AA .,
b=B,-1A;;,
C=B;,—4A; .

If b*’—4ac=0, then (via the Mathematica
software) we have:

_12(-240°% — afPAXR + 43 120° — o* BPAXR)

& 96a°AX® + f°AX*
= 12(~24a° — af?Ax? — 4/3\120:° — o’ f2AX?)
2 960 2AX? + B2AX '

/12 has negative real part for each possible value of

a, B,AX . 1f 12a° —a* BZAX? <0 then A, has

negative real part. For 12a.° —a* f?Ax* > 0, we

have:

120 °—a *f?AX? <120 ° =

4\/5\/120: —a'fiAx? <24a’

= —240° - aff 2AX® + 43,120 *— @ B 2AX? <
—-af 2AX %<0 ,

so0, 4, isnegative.
Now consider that b*—4ac=0. In this

situation let
r_—b—\/b2—4ac . _ —b++/b*-4ac
1~ 1l ™

2a 2a

be roots of equation ar’+br+c=0, then
v = clrl‘ +c2r2‘ is solution of difference equation
Eq(9). We need to have v, =v,, =0, since
v, =0 then C =—C,, but we need v, =0,
then (E)M =1.
r2
Let R:Ll,so
r'2
R=cos(%)+isin(%),k=0,1,---,M—1.

Since
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r 2b? — 4ac + 2b+/b? — 4ac

R = -1 =
r, 4ac

2k .. 2krx
= cos () + i sin (5=2),
(M) (M)

from the previous lemma, it is sufficient to have

b>
R — COs
then by solving the b*—4act =0 , te[0,]1],
we will have:

2
= (AIZJA_Z)

0 o
=). If t =cos’ (=),
(2) we assume cos (2)

1 = 2(A1_\/A2)
A
3

where
A, = -120a°Ax* =100 *AX* — 240 °AX*t
+ dof 2tAx* <0,
A, =12°a*tAX* —1728a* BHAX® — BotAXY
+ B°t2AX
A, =100 *AX* — 4 tAX* + B*tAX® > 0

Obviously, A, has negative real part for each

possible value of ¢, . 1f A, <0, then 4 has

negative real part. But if it is positive, then we have
(viathe Mathematica software):

A +A, S0 A, <A <
AX* (a® (4t —100) — B2AX?t) ((1-t)(-144a”
~ BAx*) -12a° B2AX?(2+1)) 2 0,
therefore A, is negative.

According to the above theorem each eigenvalue
of C isin the left-half complex plane and similar
to deterministic case, it is useful for stability.

3. Semi-implicit Milstein method and its stability

Consider the n— dimensiona SDE of Ito type
given by:

dX (t) = f (X (1)) dt + g(X (1)) dW(t)
t>0 X(0)= X, eR"

whee f:R"—>R" and g:R" > R" , and
W(t) is a scalar wiener process[16]. The semi-
implicit  Milstein  scheme for  computing

approximations X, =~ X(t,) takesthe form:

X = X, +(1-0)At T (x,)+ O At T(X,.,)
(10)
#VARGX, )V, +2AG(X,) 9X,) (V-1

where V, is an independent standard Normal
(0,2) random variable [17], and € is a free
parameter (usualy 0< 60 <1).
The above scheme is caled trapezoidal
1
particularly if & ZE' and backward Euler scheme

if @=1. We note that in the deterministic case,
g =0, Eq(10) is caled the Theta method [17, 18].
Semi-implicit Milstein  method for stochastic

system Eq (8) takes the form:
U,,=U, +(1-0)At(CU,) +0AL(CU, ;)

11
+\/E(0Un)vn+%At(0'2Un)(\/n2—1); )

or:
(1 -AtC)U,, =U_+(1-0)AtCU,

=F = (12)
+~/AtV, aun%m(\/f -1,

whereU ~[u(x,t,),u(X,,t ),---,u(x,_,t)]"-
In component form, we have:

szjUrL-l =Us +ZijUr£
= = (13)
+/At oV Uk +%Ato*2 V2 -1Ufk,

inwhich k =1,...,M —-1.
Before proving the following theorem, we define
that Supkzj |ij = zj |ij | and

Supkzj | Fq = Zj | Fy |.

Higham [17] and Saito [19] applied the semi-
implicit Milstein method on the test equation:

dy(t) = 4 y(t)dt + 2 y(t)dW(t) , y(0) = y,,

and obtained useful properties about it's stability.
For stability, we need a norm, hence for sequence

X={-"+,X 4, %5, X,-+}, sup-norm is defined

1X]1..= +/sup, | % [ [8]. We refer to the paper of
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Roth [8] for the following definition.

Definition 1. (Stability of a stochastic difference
scheme) A stochastic difference scheme is said to
be stable with respect to a norm in mean square if

there exist some positive constants AX, and At,
and constants K and » such that

E|Ju™|P< KeE||U°|?, (14)
For all
0<t = (n+1)At,0< AX< Ax,,0< At < At,.

Remark 1. One interpretation of stability of a
difference scheme is that for stable difference
schemes small errors in the initial conditions cause
small errors in the solutions. The definition allows
the erors to grow, but limits them from
growingless quickly than exponentially. Numerical
solution can keep a similar property as n tends to
infinity when it is applied to the stable SDE in
mean-square.

Remark 2. For the proposed scheme the increments
of Wiener process are independent of the state U r‘j .

1+ > |G
Theorem 3. If M

Milstein scheme with (n+1)At =t is stable in
mean square.

<1 then semi-implicit

Proof:Applying E|.f to Eq(13) and using the
independence of Wiener increments, we get

B[RV =

E[US+> G/ +/At oV,Uk +
=1

SAata® V2 -DULT
=E|USF+E|D GU) F +Ata?E UL F

=1

+%At204E|Ur'f F+2EJUf SGUIP.
=1

then:

E[D FyUnal’ <([1+Z|G I° +Ato?

+%At2 c’)supE|UK .
k

Thishold for every K, so
> IF IPsupE (UL, P< (141G, 112
j k j
+Ato*2+%At2 o)supE|UK .
k

$1
1+Z|G

walumll—([ 2+

ZIFL,

(At o +%Atza4))s:p5|unk 2

I
(Zl F, D?
i
since At <1, we have

SUpE |Uy,,, '< (SC* +
k

(02+§a4))wa|u: i
k

At
I

IA

At 1 e
<(C*+——=——— (07 +Eo-4)) lsLdpE JUSP.

IR

> IR
1+ ) |G,
Obviously if [M] <1 then with
(n+1)At =t , wehave:
EllU,.I%<e"ENU, L%,
oc’+-o"

where yE
X, 1Ry D

Therefore, according to definitionl, our schemeis
stable.
But there is an essential question: when is

1Z|
Zl

For different values of «, ﬂ we have plotted

]<1 satisfied?

log scale of o= 142, 1Gn
Z |FL]|

observed that the stability condition (SC <1) holds

] againgt €. It is
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for 1 < g <1(Fig. 1).
2

log(SC)
(=]

|

0 01 02 03 04 05 06 07 0B 08 1
Theta

Fig. 1. Stability condition: we see |og(sc) <0 for1<9. It
5 <

means that stability condition is satisfied for thisinterval.

4. Numerical experiments

In this section, we consider some SPDEs and
investigate the results of the previous section. For

each {AX,At},10000 runs are performed with

different samples of noise(via Matlab software) and
their averages are computed.

Example 1. Consider the following stochastic heat
equation:
u, (x,t) = u (X,t) +u(x, HW(t),
u(x,0) =sin(zx),t €[0,0.3],xe[0,1] (15
u(o,t) =u(1,t) =0.

In this case, we choose Ax:i At -1 For

100’ 1000
different values of @, we have Tablel. From

1
Tablel it is obvious that for — <@ stability

condition 14,1y |_, holdsand E(u(0.50.3)) is
PG
about 0.0519.

Example 2. Consider the following stochastic advection-
diffusion equation:

u, (x,t) =0.001u,, (x,t)+u,

—2u(x, W (1),
u(x,0)=x*@1-x)?, (16)
u(0,t) =u(Lt) =0t [0,1]

Table 1. Comparison between stability condition and
different values of @, for example 1.

12,16 | E(u(0.5,0.3))
> IR

0 61 NaN
0.1 7.8571 8.994 e+246
0.2 3.7692 3.9655 e+150
0.3 2.2631 -1.749 e+83
04 1.48 8.3812 et+26
045 1.2142 3.2909
0.5 1 0.05161
0.6 0.6756 0.05175
0.7 0.4418 0.05190
0.8 0.2653 0.0520
0.9 0.1272 0.05199
1 0.0164 0.05210

For this exampleweuse ,, 1 ,,_ 1 FromTable

100" 10
2 we can observe that E(u(0.51)) is about zero for

lgg.
2

Table 2. Representation of stability condition and
E(u(0.5) for different values of ¢

corresponding to example2.

1ZZ|'FG|' E(u(0.51))

0 71.33 -2.8241 e+5
0.1 8.00414 0.22641
0.2 3.8008 0.10441

03 22730 -0.0405
04 14828 -0.0070
045 12154 -0.00238
05 1 -71.5774 e-4
0.6 0.6744 -2.4496 e-5
0.7 0.4399 9.9938 e-6
0.8 0.2630 -4.0235 e-5
0.9 0.1249 4.8299 e-5

1 0.0140 1.8300e-4
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Example 3. Consider the following stochastic
advection-diffusion equation:
u, (x,t) =u (Xt) —u, — 2u(x, t)W(t),
u(x,0) =10x(1-x),t €[0,0.5], x[0,1] (17)
u(o,t) =u(1,t) =0.

We choose Ax = li,At -1 for this case.

1000
In Table3, we see the results for E(u(0.5,0.5)) are

destroyed when oga<%, while for%ga, the

stable results are obtained.

Table 3. Investigation of stability condition and
E(u(0.5,0.5)) for different values of ¢

1+Zj|ij|

2] Zj IF, | E(u(0.5,0.5))
0 61 NaN
01 7.8571 NaN
0.2 3.7692 -4.5047 e+262
03 22631 -8.7938 e+150
0.4  1.4800 -5.8375 e+56
045 1.2142 -6.9331 et+12
05 1 0.017684
0.6 0.6756 0.01777
0.7 0.4418 0.017860
0.8 0.2653 0.01794
09 01272 0.01803
1 0.0164 0.01810

5. Conclusion

In this paper, we approximate the stochastic
advection-diffusion equation using the compact
finite difference technique and semi-implicit
Milstein method and studied the stability condition,
theoretically and  numerically.  Numerica
experiments show that the proposed scheme is

unconditionally stable for 1 <0.
2
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