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Abstract 

In this paper, tanh method is applied to obtain exact solutions for two systems of nonlinear wave equations, 
namely, two component evolutionary system of homogeneous KdV equations of order 3 (type I as well as type II). 
Moreover, traveling wave hypothesis is used to obtain sech solution of type II coupled KdV system, in a more 
general setting. The results show that this method presents exact solutions compared with other methods and it is a 
powerful tool for solving systems of nonlinear PDEs. 
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1. Introduction 

Nonlinear coupled partial differential equations are 
very important in a variety of scientific fields, 
especially in fluid mechanics, solid state physics, 
plasma physics, plasma waves, capillary-gravity 
waves and chemical physics. The nonlinear wave 
phenomena observed in the above mentioned 
scientific fields are often modeled by the bell-
shaped sech solutions and the kink-shaped tanh 
solutions. The availability of these exact solutions 
for those nonlinear equations can greatly facilitate 
the verification of numerical solvers on the stability 
analysis of the solution [1], [2]. The hyperbolic 
tangent (tanh) method is a powerful technique to 
symbolically compute traveling wave solutions of 
one-dimensional nonlinear wave and evolution 
equations. In particular, the method is well suited 
for problems where dispersion, convection, and 
reaction diffusion phenomena play an important 
role [3]. In this paper, we solve three systems of 
nonlinear wave equations; these systems can be 
seen in [4]. In mathematical physics, they play a 
major role in various fields, such as plasma physics, 
fluid mechanics, optical fibers, solid state physics, 
geochemistry, and so on. 

These nonlinear of those systems are called 
component evolutionary systems of homogeneous 
KdV equations of order 3 (type I and type II) 
respectively given by   
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2. Outline of the tanh method 

The tanh method will be introduced as presented by 
Malfliet [5] and by Wazwaz [6], [7], [8]. The tanh 
method is based on a priori assumption that the 
traveling wave solutions can be expressed in terms 
of the tanh function to solve the coupled KdV 
equations. The tanh method is developed by 
Malfliet [5]. The method is applied to find out exact 
solutions of a coupled system of nonlinear 
differential equations with three unknowns: 
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where 1P , and 2P  are polynomials of the 

variables u v  and their derivatives. We consider 

( ) ( )u x t u    and ( ) ( )v x t v    where 

kx t   , and use the following changes: 
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and so on, then (3) become ordinary differential 
equations: 
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with 21,QQ  being another polynomials form of 

their argument, which will be called the reduced 
ordinary differential equations (4). Integrating (4), 
as long as all terms contain derivatives, the 
integration constants are considered to be zeros in 
view of the localized solutions. However, the 
nonzero constants can be used and handled as well 
[8]. Now, finding the traveling wave solutions to 
(3) is equivalent to obtaining the solution to the 
reduced ordinary differential equations (4). For the 
tanh method, we introduce the new independent 
variable 
 

( ) tanh( )Y x t                                                 (5) 
 
that leads to the change of variables: 
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The next crucial step is that the solution we are 

looking for is expressed in the form 
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where the parameters m, and n can be found by 
balancing the highest-order linear term with the 

nonlinear terms in (3), and k ,  , 0 1 ma a … a   , 

nbbb ,.....,, 10  are to be determined. Substituting (7) 

into (4) and equating the coefficients of iY  to zero, 
yields to the set of algebraic equations for k ,  , 

0 1 ma a … a   , nbbb ,.....,, 10 . Having determined 

these parameters, knowing that m , and n  are 
positive integers in most cases, and using (7), we 
obtain the expressions for ( )u x t  and ( )v x t  in a 

closed form [8]. The tanh method seems to be a 
powerful tool in dealing with coupled nonlinear 
physical models. 

3. Applications 

In this section, we apply the tanh method to the 
proposed systems. These systems were studied by 
[9] by applying HPM. 
 
Example 1. Consider a two component 
evolutionary system of KdV equations of order 3 
(type I) [9]: 
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Using the traveling wave transformations: 
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where 
 

tanh( )Y                                                       (10) 
 

kx t                                                         (11) 
 
the nonlinear system of partial differential 
equations (8) is carried to a system of ordinary 
differential equations 
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By postulating tanh series, and using the 

transformations given by (10) and (11), the first 
equation in (12) reduces to 
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while the second equation in (12) reduces to 
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Now, to determine the parameters m  and n , we 

balance the linear term of highest-order with the 
highest order nonlinear terms. So, in (13) we 
balance U   with VV   to obtain 
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while in (14) we balance V   with UV   to obtain 
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The tanh method admits the use of the finite 
expansion for both: 
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Substituting U U U U     ,V V V   , in (14), 

then equating the coefficient of iY , 
0 1 2 3 4 5i        leads to the following nonlinear 

system of algebraic equations 
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Solving the nonlinear systems of equations (17) 

and (18) we get two solution sets 
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Case I. From (19) we get the following solution of 
the system (8): 
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Values k  and   can be any real numbers. For 

example, if we choose 1
2k   and 1

2   , the 

solution (21)-(22) has the form 
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Figures 1, 2 illustrate ( )u x t  and ( )v x t  

respectively in the region 10 10x   , and 
5 5t   .  
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Fig. 1. illustrates ( )u x t  in the region 

10 10x   , and 5 5t    
 

 
 
Fig. 2. illustrates ( )v x t  in the region 

10 10x   , and 5 5t    
 
Case II. From (20) we obtain the following 
solution 
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Figures 3, 4 illustrate ( )u x t  and ( )v x t  

respectively, in the region 10 10x    and 

5 5t   .  
 

 
 
Fig. 3. illustrates ( )u x t  in the region 

10 10x   , and 5 5t    
 

 
Fig. 4. illustrates ( )v x t in the region 10 10x   , 

and 5 5t    
 
Example 2. Consider a two component 
evolutionary system of KdV equations of order 3 
(type II) [9]: 
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Using the traveling wave transformations in (9), 

(10) and (11), the nonlinear system of partial 
differential equations (25) is carried to a system of 
ordinary differential equations 
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By postulating the tanh series, and using (10)-

(11), the first equation in (26) reduces to 
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while the second equation in (26) reduces to 
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Now, to determine the parameters m  and n , we 

balance the linear term of highest-order with the 
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The tanh method admits the use of the finite 
expansion for both: 
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Solving the nonlinear systems of equations (31) 
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By replacing these, we obtain the following 

expressions for ( )u x t  and ( )v x t  respectively: 
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Figures 5, 6 illustrate ( )u x t  in (35) and ( )v x t  

in (36) respectively in the region 10 10x    

and 5 5t   .  
 

 
Fig. 5. illustrates ( )u x t  in the region 

10 10x   , and 5 5t    
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Fig. 6. illustrates ( )v x t  in the region 

10 10x   , and 5 5t    

4. Traveling wave solutions 

In this section, the traveling wave hypothesis will 
be used to carry out the integration of the nonlinear 
wave equation in Example 2 in a generalized 
setting. Here the power law nonlinearity will be 
taken into account. Therefore, equation (25) is 
rewritten with arbitrary coefficients and power law 
nonlinearity parameter n  as 
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Here, in equations (37) and (38), a , b , c  and 

k  are constant coefficients while n  is the power 
law nonlinearity parameter. In order to integrate 
(37) and (38), the following traveling wave 
hypothesis is assumed 
 

( ) ( )q x t g x vt                                             (39) 
 
and 
 

( ) ( )r x t h x vt                                              (40) 
 

Here, in (39) and (40), g  and h  represent the 

nonlinear wave form of the solutions and v  
represents the soliton velocity. Substituting (39) 
and (40) into (37) and (38) leads to the ODEs 
 

0vg ahg bgh cg                                (41) 
 
and 
 

0nvh kg g                                                  (42) 
 

In (41) and (42) g   represents dg ds , g   

represents 2 2d g ds  and so on, with a similar 

notation for the h  variable where 
 
s x vt                                                            (43) 
 

Integrating (42) with respect to s  and 

substituting h  in terms of g  into (41) leads to 
 

2

0
( 1) 2

nak bk g
vg cg

n v v n


 

      
        (44) 

 
after integration, where in both cases the integration 
constant is taken to be zero, since the search is for a 
soliton solution. Now, multiplying both sides of 

(44) by g   and integrating again, still taking the 

integration constant to be zero leads to 
 

2

2
2 1

2 ( )

( 1)( 2)( 3)

( 1)( 2)( 3)

2 ( )
n

k a b bn
g

n n n cv

n n n v
g g

k a b nb

 
 
 

 
 
 
 
 

 


  

  
 

 

     (45) 

 
which upon integration yields the 1-soliton solution 
for ( )q x t  as 
 

2
1

1( ) ( ) sech [ ( )]nq x t g x vt A B x vt      (46) 
 
where the amplitude 1A  and the width B  are 

respectively given by 
 

1
12

1

( 1)( 2)( 3)

2 ( )

nn n n v
A

k a b nb

   
    

                 (47) 

 
and 
 

1

2

n v
B

c


                                                    (48) 

 
These relations pose the constraints 

 
0cv                                                                  (49) 

 
and 
 

2 ( ) 0kv a b nb                                           (50) 
 
for odd values of n . Finally, the 1-soliton solution 
for the r -variable is obtained from (42) as 
 

2
2( ) sech [ ( )]r x t A B x vt                          (51) 

 
where the amplitude 2A  in this case is given by 
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2

( 2)( 3)

2( )

n n v
A

a b nb

 
 

 
                                    (52) 

 
Consider again the special case of the system 

(37)-(38), considered in Example 2 of the previous 
section (equations (25)). It is obtained for the 
following values of parameters 
 

2 1 1a b c k n          
 
and is given by 
 

 
 2

( ) 3 ( )

3
( ) ( )

2

q x t v sech v x tv

r x t v v x tvsech

      

     
         (53) 

 
Taking 1v    we obtain 

 

2

( ) 3 ( )

3
( ) ( )

2

q x t sech t x

r x t t xsech

   

   
                              (54) 

 
Figures 7, 8 illustrate ( )q x t  and ( )r x t  in 

(54) in the region 3 3x    and 1 1t   . 
 

 
 
Fig. 7. Illustrates ( )q x t  in (54) in the region 

3 3x    and 1 1t    
 

 
Fig. 8. Illustrates ( )r x t  in (54) in the region 

3 3x    and 1 1t    
Note that the solution (33)-(34) obtained in the 

previous section differs from the general solution 
(equations (46) and (51)) derived in this section. This is 

because the expression (46) for ( )q x t  does not have 

finite tanh expansion, which was the assumption in the 
previous section.  

5. Conclusions 

In this paper, we applied tanh method for solving 
nonlinear coupled partial differential equations. The tanh 
method requires transformation formulas and traveling 
wave solutions were obtained. It is observed that all 
solutions of the coupled KdV systems type I, II obtained 
in this paper by tanh method were successfully 
compatible to the results obtained by Marwan [9] using 
the HPM. It is also shown that using traveling wave 
hypothesis, one can obtain sech solution of type II 
coupled KdV system, in more general setting.  
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