TY - JOUR
ID - 2300
TI - PROJECTIVELY RELATED EINSTEIN FINSLER SPACES
JO - Iranian Journal of Science and Technology (Sciences)
JA - IJSTS
LA - en
SN - 1028-6276
AU - SADEGH-ZADEH, N.
AU - RAZAVI, A.
AU - REZAEI, B.
AD - Department of Mathematics and Computer Science of Amir-Kabir University, Tehran, I. R. of Iran
Y1 - 2008
PY - 2008
VL - 32
IS - 4
SP - 421
EP - 429
KW - Projectively related Finsler metrics
KW - projectively flat
KW - Einstein Finsler metric
DO - 10.22099/ijsts.2008.2300
N2 - The main objective of this paper is to find the necessary and sufficient condition of a given Finslermetric to be Einstein in order to classify the Einstein Finsler metrics on a compact manifold. The consideredEinstein Finsler metric in the study describes all different kinds of Einstein metrics which are pointwiseprojective to the given one. This study has resulted in the following theorem that needs the proof of threeprepositions. Let F be a Finsler metric (n > 2) projectively related to an Einstein non-projectively flatFinsler metric F , then F is Einstein if and only if F = λ F whereλ is a constant. A Schur type lemma isalso proved.
UR - http://ijsts.shirazu.ac.ir/article_2300.html
L1 - http://ijsts.shirazu.ac.ir/article_2300_1d2fa8ed46454558cc9c742c54cbf50f.pdf
ER -