Korovkin type approximation theorems are useful tools to check whether a given sequence of positive linear operators on of all continuous functions on the real interval is an approximation process. That is, these theorems exhibit a variety of test functions which assure that the approximation property holds on the whole space if it holds for them. Such a property was discovered by Korovkin in 1953 for the functions and in the space as well as for the functions 1, cos and sin in the space of all continuous 2π-periodic functions on the real line. In this paper, we use the notion of statistical lacunary summability to improve the result of [Ann. Univ. Ferrara, 57(2) (2011) 373-381] by using the test functions in place of and We apply the classical Baskakov operator to construct an example in support of our main result.